
- •Теорія механізмів і машин
- •Тмм як наука. Початкові (вхідні) поняття та визначення
- •З історії науки
- •Розділ 1. Загальні методи визначення кінематичних і динамічних характеристик механізмів і машин
- •1. Структура та класифікація механізмів
- •1.1. Ланки та кінематичні пари. Класифікація кінематичних пар
- •Ланки механізму рухомо з’єднані між собою. Рухоме з’єднання двох ланок, що дотикаються, називають кінематичною парою.
- •1.2. Кінематичні ланцюги.
- •1.3. Основні види механізмів та їх структурні схеми
- •1.4. Структурні формули кінематичних ланцюгів
- •Аналіз ступеня вільності механізму. Наведемо визначення механізму, враховуючи нові поняття.
- •Зайві ступені вільності. Розповсюдженим прикладом зайвих ступенів вільності є обертання роликів на їх осях. Як приклад розглянемо кулачковий механізм з роликовим штовхачем (рис. 1.6).
- •1.5. Структурна класифікація плоских механізмів. Основний принцип створення механізмів
- •Послідовність виконання структурного аналізу.
- •2. Кінематичне дослідження механізмів
- •2.1. Задачі та методи кінематичного дослідження
- •2.2. Функція положень та кінематичні передатні функції механізму
- •2.3. Плани механізму
- •2.4. Дослідження руху механізмів методом кінематичних діаграм
- •2.5. Метод планів швидкостей та прискорень
- •2.6. Кінематичне дослідження механізмів аналітичними методами
- •3. Силовий розрахунок механізмів
- •3.1. Сили, що діють на ланки механізмів та машин
- •3.2. Загальна методика силового розрахунку
- •3.3 Силовий розрахунок шарнірно-важільного механізму
- •3.4. Теорема Жуковського
- •4. Тертя в механізмах і машинах
- •4.1. Тертя ковзання сухих тіл
- •4.2. Тертя гнучкої ланки
- •4.3. Основні відомості про рідинне тертя
- •4.4. Тертя кочення
- •4.5. Механічний коефіцієнт корисної дії
- •Представимо ккд кожного з механізмів таким чином:
- •5. Дослідження руху машинного агрегату з жорсткими ланками
- •5.1. Динамічна модель машинного агрегату з одним ступенем вільності
- •5.2. Зведення сил та мас
- •5.3. Рівняння руху механізму
- •5.4 Режими руху
- •5.5. Визначення закону руху механізму
- •5.6 Усталений режим. Нерівномірність руху механізму
- •5.7. Визначення моменту інерції маховика методом Віттенбауера (за допомогою діаграми енергомас)
- •6. Зрівноваження механізмів
- •6.1. Зрівноважування механізмів на фундаменті
- •6.2. Зрівноваження обертових ланок (роторів)
- •6.3. Динамічне балансування роторів при проектуванні
- •Статичне та динамічне балансування виготовлених роторів. Повністю збалансований при проектуванні ротор після виготовлення має, тим не менше, деяку незрівноваженість.
- •Розділ 2. Методи проектування схем основних видів механізмів Глава 7. Синтез плоских важільних механізмів
- •7.1. Умови існування кривошипа в плоских чотириланкових механізмах
- •7.2. Синтез чотириланкових механізмів за двома положеннями ланок
- •7.3. Синтез чотириланкових механізмів за коефіцієнтом зміни середньої швидкості та за середньою швидкістю вихідної ланки
- •Глава 8. Кулачкові механізми
- •8.1. Загальні відомості. Види кулачкових механізмів
- •8.2. Кінематичний аналіз кулачкових механізмів
- •8.3. Закон руху вихідної ланки
- •8.4. Визначення основних розмірів кулачкового механізму
- •8.5. Побудова профілю кулачка
- •9. Зубчасті передачі
- •9.1. Основна теорема зачеплення
- •9.2. Евольвента кола, її властивості та рівняння
- •9.3. Основні геометричні параметри циліндричних зубчастих передач
- •9.4. Якісні показники зубчастої передачі
- •9.5. Деякі відомості про способи нарізання зубчастих коліс
- •9.6. Початковий (вихідний) контур зубчастих коліс
- •9.7. Підрізання зубців. Мінімальне число зубців при виготовленні зубчастих коліс
- •9.8. Коригування (виправлення) зубчастих коліс евольвентного зачеплення
- •9.9. Вибір коефіцієнтів зміщення
- •9.10. Особливості евольвентної передачі внутрішнього зачеплення
- •9.11. Особливості геометрії косозубих циліндричних передач
- •9.12. Просторові зубчасті передачі
- •Перемножимо праві і ліві частини цих виразів
- •Рядове зачеплення з паразитними колесами. Рядове зачеплення з паразитними колесами характеризується тим, що на кожному з проміжних валів розміщено лише одне колесо.
- •9.13. Кінематичний аналіз диференціальних та планетарних механізмів
- •Література
- •Теорія механізмів і машин
- •43018 М. Луцьк, вул. Львівська, 75.
- •Ярошевич м.П.
- •Теорія механізмів
- •І машин
- •Навчальний посібник
- •Л уцьк 2008
6.3. Динамічне балансування роторів при проектуванні
Задачею динамічного балансування ротора є не тільки зведення центра мас до осі обертання, але й забезпечення співпадання головної центральної осі інерції ротора з віссю обертання.
Нехай ротор становить сукупність кількох мас (деталей), які обертаються як одне ціле. При цьому маси та координати центрів мас усіх деталей відомі (рис. 6.7).
Зазначимо, що можна було б кожну з мас зрівноважувати окремо за методикою статичного зрівноваження. Однак цей шлях є недоцільним, оскільки у таких системах майже завжди має місце часткове взаємне зрівноваження дисбалансів.
Таким чином,
розглянемо ротор, що становить чотири
незрівноважених маси, розміщені у
площинах, перпендикулярних до осі
обертання. Координати центрів мас у цих
площинах визначаються радіус-векторами
.
Рис. 4.7
Динамічного
зрівноваження можна досягти за допомогою,
як мінімум, двох противаг, які встановлюють
у двох різних площинах. Для цього оберемо
дві площини зведення (І та ІІ), які
перпендикулярні до осі обертання
(рис. 6.8, а).
Позначимо маси цих противаг
і
,
а радіус-вектори, що визначають координати
центрів мас щодо осі обертання,
,
.
а б
в г
Рис. 6.8
Тоді умови динамічного зрівноваження робота можуть бути записані наступним чином
(5)
.
(6)
При аналітичному розв’язуванні цієї задачі систему (5), (6) проектуються на осі координат. З рівняння проекцій знаходять невідомі параметри.
Зручнішим та наочнішим є графічний спосіб розв’язування цих рівнянь. Визначення величини і розміщення противаг у такий спосіб досягається побудовою векторних багатокутників.
Спочатку будуємо
векторний багатокутник згідно з рівнянням
(6). При цьому вектори динамічного
дисбалансу
зручно повернути на
так, щоб вони збігалися з напрямками
відповідних сил інерції.
У вибраному
масштабі, будують п’ятикутник, який
складається з відомих векторів
,
,
,
,
та невідомого вектора
,
що замкне побудову (рис. 6.8, в).
З отриманого
вектора
,
задавшись однією з шуканих величин
(наприклад масою противаги), визначають
іншу невідому (радіус противаги). Напрямок
радіус-вектора
противаги визначають кутом
,
який вимірюють безпосередньо на креслені.
Потім будуємо
векторний багатокутник за рівнянням
(5). У цьому многокутнику невідомою
величиною буде замикаючий вектор, модуль
якого дорівнює добутку
.
Задавши один із співмножників у цьому
добутку, знайдемо другий. Кут
,
який визначає напрямок радіуса-вектора
противаги, знайдемо з рисунка 6.8, г.
Статичне та динамічне балансування виготовлених роторів. Повністю збалансований при проектуванні ротор після виготовлення має, тим не менше, деяку незрівноваженість.
Усі ротори, що швидко обертаються, перевіряють експериментально на спеціальних балансувальних машинах. Конструкція їх досить різноманітна, але в основу дії більшості з них покладено встановлення ротора на пружну основу (рис. 6.9), при цьому ротору надають швидкості близької до резонансної. Тоді незрівноважені сили створюють значні амплітуди коливань, які реєструють спеціальні пристрої, що дозволяють визначити місця, в яких треба встановити зрівноважувальні маси.
Рис. 6.9
Зрівноваження роторів автобалансувальними пристроями. якщо дисбаланс ротора й зв’язаних з ним мас змінюється у процесі експлуатації (пральні машини, центрифуги) або якщо необхідно підвищити точність зрівноваження, ротор зрівноважують під час роботи.
Для цього використовують автобалансувальні пристрої, автобалансири (АБП). Їх розміщують усередині ротора, або насаджують на нього. Зрівноваження ротора здійснюється переміщенням коригувальних вантажів.
Рис. 6.10
АПБ бувають активні та пасивні. Активні АБП працюють при будь-яких швидкостях. Але вони мають складну конструкцію: необхідна наявність механізмів примусового переміщення коригувальних вантажів, датчиків і т.п.
Пасивні АБП працюють на закритичних швидкостях обертання ротора, мають відносно просту конструкцію. Їхня робота ґрунтується на явищі самоцентрування – на закритичних швидкостях обертання пружно закріпленого твердого ротора, його головна центральна вісь інерції прямує до осі обертання, причому тим більше, чим вища швидкість обертання. АБП бувають з твердими коригувальними вантажами (рис. 6.10) та рідинні, у яких коригувальним вантажем є рідина.