
- •Квантовая физика
- •Тема 3.1. Квантовые законы движения микрообъектов
- •§ 3.1.1. Корпускулярно-волновой дуализм
- •Основные связи корпускулярности и волны
- •§ 3.1.3. Соотношение неопределенностей, его физическая и методологическая интерпретация
- •§ 3.1.4. Волновая функция и ее статистический смысл
- •Величина
- •§ 3.1.5. Уравнение Шрёдингера – основное уравнение нерелятивистской квантовой механики. Уравнение Шрёдингера для стационарных состояний
- •§ 3.1.6. Частица в одномерной прямоугольной «потенциальной яме»
- •Общее решение дифференциального уравнения (3):
- •§ 3.1.7. Прохождение частицы сквозь потенциальный барьер.
- •3.2. Физика атомов и молекул § 3.2.1. Атом водорода в квантовой механике
- •§ 3.2.2. Спин электрона. Спиновое квантовое число
- •§ 3.2.3. Принцип Паули. Распределение электронов в атоме
- •§ 3.2.4. Периодическая система Менделеева
- •§ 3.2.5. Спектры излучения атомов
- •§ 3.2.6. Молекулы: химические связи, понятие
- •§ 3.2.7. Поглощение, спонтанное и вынужденное излучение
- •§ 3.2.8. Оптические квантовые генераторы (лазеры)
- •3.3. Электропроводимость полупроводников и металлов
- •§ 3.3.1. Понятие о квантовой статистике Бозе-Эйнштейна
- •§ 3.3.1. Вырожденный электронный газ в металле.
- •§ 3.3.2. Выводы квантовой теории электропроводности
- •§ 3.3.3. Понятие о зонной теории твердых тел
- •§ 3.3.4. Металлы, диэлектрики и полупроводники
- •§ 3.3.5. Собственная проводимость полупроводников
- •§ 3.3.6. Примесная проводимость полупроводников
- •3.3.7. Контакт двух металлов по зонной теории
- •3.3.8. Контакт электронного и дырочного полупроводников
- •3.3.9. Полупроводниковые диоды и триоды
- •Тема 3.4. Квантовые свойства излучения и их
- •§ 3.4.1. Тепловое излучение и его характеристики
- •§ 3.4.2. Закон Кирхгофа
- •§ 3.4.3. Законы Стефана — Больцмана и смешения Вина
- •§ 3.4.4. Виды фотоэлектрического эффекта.
- •§ 3.4.5. Уравнение Эйнштейна для внешнего фотоэффекта
- •§ 3.4.6. Фотон и его характеристики
- •§ 3.4.7. Эффект Комптона
- •Тема 3.5. Атомное ядро и ядерные силы
- •§ 3.5.1. Состав атомного ядра и его характеристики
- •§ 3.5.2. Дефект массы и энергия связи ядра
- •§ 3.5.4. Ядерные силы
- •§ 3.5.5. Радиоактивность
- •§ 3.5.6. Закон радиоактивного распада.
- •§ 3.5.9. Ядерные реакции
- •§ 3.5.12. Реакции деления ядра и цепные реакции деления
- •§ 3.5.13. Понятие о ядерной энергетике
- •§ 3.5.14. Реакция синтеза атомных ядер
§ 3.3.4. Металлы, диэлектрики и полупроводники
по зонной теории
Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон.
Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующего атомного уровня.
В общем случае можно говорить о валентной зоне, которая полностью заполнена электронами и образована из энергетических уровней внутренних электронов свободных атомов, и о зоне проводимости (свободной зоне), которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внешних «коллективизированных» электронов изолированных атомов.
В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая, изображенные на рис.17. На рис. 17, а самая верхняя зона, содержащая электроны, заполнена лишь частично, т. е. в ней имеются вакантные уровни. В данном случае электрон, получив сколь угодно малую энергетическую «добавку» (например, за счет теплового движения или электрического поля), сможет перейти на более высокий энергетический уровень той же зоны, т. е. стать свободным и участвовать в проводимости. Внутризонный переход вполне возможен, так как, например, при 1 К энергия теплового движения kТ ≈10 –4 эВ, т.е. гораздо больше разности энергий между соседними уровнями зоны (примерно 10 -22 эВ). Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам.
Твердое тело является проводником электрического тока и в том случае, когда валентная зона перекрывается свободной зоной, что в конечном счете приводит к не полностью заполненной зоне (рис. 17, б), Это имеет место для щелочно-земельных элементов, образующих II группу таблицы Менделеева (Ве, Мg, Са, Zn, ...). В данном случае образуется так называемая «гибридная» зона, которая заполняется валентными электронами лишь частично. Следовательно, в данном случае металлические свойства щелочно-земельных элементов обусловлены перекрытием валентной и свободной зон.
Рис. 17
Помимо рассмотренного выше перекрытия зон возможно также перераспределение электронов между зонами, возникающими из уровней различных атомов, которое может привести к тому, что вместо двух частично заполненных зон в кристалле окажутся одна целиком заполненная (валентная) зона и одна свободная зона (зона проводимости). Твердые тела, у которых энергетический спектр электронных состояний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны, ΔЕ.
Если ширина запрещенной зоны кристалла порядка нескольких электрон-вольт, то тепловое движение не может перебросить электроны из валетной зоны в зону проводимости и кристалл является диэлектриком, оставаясь им при всех реальных температурах (рис. 17, в). Если запрещенная зона достаточно узка (ΔЕ порядка 1 эВ) то переброс электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко либо путем теплового возбуждения, либо за счет внешнего источника, способного передать электронам энергию ΔЕ, и кристалл является полупроводником (рис. 17, г).
Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольно широка (например, для NaCl ΔЕ = 6 эВ), для полупроводников – достаточно узка (например, для германия ΔЕ '= 0,72 эВ). При температурах, близких к 0 К, полупроводники ведут себя как диэлектрики, так как переброса электронов в зону проводимости не происходит. С повышением температуры у полупроводников растет число электронов, которые вследствие теплового возбуждении переходят в зону проводимости, т. е. электрическая проводимость проводников в этом случае увеличивается.