
- •Линейные электрические цепи
- •Постоянный ток
- •§ 1.1. Законы Кирхгофа
- •§ 1.2. Примеры использования законов Кирхгофа (методы расчетов)
- •§ 1.3. Матрично-топологический метод
- •§ 1.4. Метод контурных токов
- •§ 1.5 Баланс мощностей
- •§ 1.6. Метод контурных токов на основе матрично–топологического подхода
- •§ 1.7. Метод узловых потенциалов
- •§ 1.8. Метод узловых потенциалов на основе матрично-топологического метода
- •§ 1.9. Метод эквивалентных преобразований
- •§ 1.10. Преобразование треугольника в звезду и звезды в треугольник
- •§ 1.11. Метод эквивалентного генератора
- •§ 1.12 Характеристики эквивалентного генератора
- •§ 1.13. Метод наложения (метод суперпозиции).
- •Варианты расчетно–графических работ по расчету цепей постоянного тока
- •Пример выполнения расчетно-графичекой работы
- •Переменный ток
- •§2.1. Немного о комплексных числах
- •§2.3. Векторные диаграммы – фазовые соотношения между величинами
- •§2.4. Показания приборов
- •§2.5. Мощность в цепи переменного тока
- •§2.6. Цепи с индуктивно связанными элементами Последовательное соединение катушек с индуктивной связью.
- •§2.7. Построение диаграммы при встречном и согласном включениях индуктивностей с магнитной связью
- •§2.8. Расчет цепи с магнитно-связанными индуктивностями
- •§2.9. Построение векторной диаграммы
- •Мощность в цепи переменного тока с взаимной индуктивностью
- •§2.10. Трансформатор
- •§2.11. Резонанс напряжений
- •Ргр №2 Расчет линейной цепи синусоидального тока
- •Трехфазные цепи
- •§3.1 Метод симметричных составляющих
- •Переходные процессы §4.1 Переходные процессы в простейших цепях. Нулевые начальные условия
- •§4.2 Классический метод расчета переходного процесса. Первый и второй законы коммутации. Понятия о зависимых и независимых начальных условиях
- •§4.3 Метод расчета переходных процессов в цепи переменный тока
- •§4.4 Переходные процессы в цепи второго порядка
- •§4.5 Операторный метод расчёта переходных процессов
- •§4.6 Интеграл Дюамеля
- •Дельта функция Дирака и -ступенчатая функция Хевисайда
- •1.3. Импульсная переходная функции (весовая функция-функция Грина)
- •§4.6 Метод пространство состояний
- •Ргр №3 расчет переходных процессов в линейных цепях Цепь I-го порядка
- •Цепь II-го порядка
- •Схемы цепей I-го порядка
- •Схемы цепей II-го порядка
- •Операционные усилители
- •§2.3 Общее рассмотрение каскада на операционном усилителе с отрицательной обратной связью
- •Контрольная работа-№1
- •Линии с распределенными параметрами
- •§5.1 Формулы для определения напряжения и тока в любой точке линии через комплексы напряжения и тока в начале линии
- •§5.2 Формулы для определения напряжения и тока в любой точке линии через комплексы напряжения и тока в конце линии
- •§5.3 Линии без потерь
- •§5.4 Коэффициент отражения
- •§5.5 Действующие значения напряжения и тока вдоль линии без потерь
- •§5.6 Стоячие волны
- •§5.7 Входное сопротивление линии без потерь при холостом ходе
- •§5.8 Аналогия между уравнениями линии с распределенными параметрами и уравнениями четырехполюсника
- •Нелинейные резистивные цепи постоянного тока
- •§6.1 Линеаризация нелинейной характеристики
- •§6.2 Расчет магнитных цепей
§4.5 Операторный метод расчёта переходных процессов
Операторный метод (преобразование Лапласа) расчета переходных процессов используется для того, чтобы обыкновенные дифференциальные уравнения с постоянными коэффициентами (в пространстве оригиналов) преобразовать в алгебраические (в пространстве изображений). Очевидно, что алгебраические уравнения решаются проще. После решения алгебраического уравнения над полученной функцией (изображением) производится обратное преобразование Лапласа, получается оригинал. Полученный оригинал – это функция, которая и будет решением дифференциального уравнения.
Любой функции можно сопоставить её преобразование Лапласа
(1)
здесь
– изображение,
– оригинал. Выражение (1) записывают ещё
и в операторной форме
.
Приведём изображение нескольких часто встречающихся функций.
Определим
изображение константы –
:
Найдем
изображение экспоненциальной функции
–
:
Изображение экспоненциальной функции
поможет нам найти изображения
синусоидальной косинусной функций–
.
Для этого запишем эти функции через
формулу Эйлера. Далее осуществляем
следующую цепочку преобразований:
Определим
изображение производной
функции
,
имеющей изображение
И,
наконец, определим изображение
интегрального выражения
Таблица преобразований Лапласа
-
-оригинал
-изображение
1
Вернёмся теперь к переходным процессам.
Итак, мы будем сопоставлять каждой
функции его изображение. Например
.
С учётом полученной таблицы можно
сопоставить каждому элементу его
изображение:
Заметим, что для того, что бы построить
изображение схемы, нужны независимые
начальные условия
.
После того как построена схема изображений,
в пространстве изображений находятся
желаемые токи и напряжения с использованием
известных методов расчета (МКирхгофа,
МУП, МКТ и т.д.). Для перехода от изображения
к оригиналу (к временной зависимости)
необходимо использовать теорему
разложения:
где pk
– корни уравнения
где pk
– корни уравнения
Пример:
Определить ток источника напряжения
если
.
Рис |

2. Рисуем операторную схему замещения после коммутации и находим изображение тока
,
где:
.Находим
корень знаменателя и его производную
,
Для определения оригинала
используем
теорему разложения
.
|
Лекция № 11