
- •1. История развития представлений о структуре атома. Теории Ломоносова и Дальтона. Модели атомов Томсона, Резерфорда, Бора.
- •5. Определение и характеристики химической связи. Теории Бутлерова, Косселя, Льюиса. Основные виды х.С.
- •6. Ковалентная связь. Обменный донорно-акцнпторный м-зм
- •7. Ионная связь
- •9.Комплексные соединения. Д-а взаимодействием молекул. Комплексообразование. Лиганды.
- •10. Природа хим связи в комплексах. Структура и свойства комплексных соединений. Изомерия комплексов. Химическая связь в комплексных соединениях и их строение
- •17.5. Химические свойства комплексных соединений
- •17.6. Изомерия комплексных соединений
- •11. Биологические важные комплексные соединения(гемоглобин, хлорофилл, витамин в12 и т.Д.)
- •12. Использование комплексных соединений в медицине, фармецевтике, промышленности.
- •13. Микроэлементы
- •14.Микроэлементы
- •15.Макроэлементы.
- •16.Микроэлементозы.А.П. Авцин
- •17. Микроэлементов. Микроэлементы в лекарственных растениях и продуктах питания.
7. Ионная связь
Ионная связь — прочная химическая связь, образующаяся между атомами с большой разностью (>1,7 по шкале Полинга)электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью.Это притяжение ионов как разноименно заряженных тел. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %.Na. — l е —> Na+ ион натрия и Cl + 1е --> .Cl - ион хлора. Между ионами Na+ и Cl- возникают силы электростатического притяжения, в результате чего образуется соединение. Ионная связь — крайний случай поляризации ковалентной полярной связи. Образуется между типичными металлом и неметаллом. При этом электроны у металла полностью переходят к неметаллу. Образуются ионы.
Если химическая связь образуется между атомами, которые имеют очень большую разность электроотрицательностей (ЭО > 1.7 по Полингу), то общая электронная пара полностью переходит к атому с большей ЭО. Результатом этого является образование соединения противоположно заряженных ионов:
Между образовавшимися ионами возникает электростатическое притяжение, которое называется ионной связью. Характеристикой подобных соединений служит хорошая растворимость в полярных растворителях (вода, кислоты и т. д.). Это происходит из-за заряженности частей молекулы.
8. Водородная связь + Ван-дер-ваальсовы силы
Ван-дер-ваальсовы силы — силы межмолекулярного взаимодействия с энергией 0,8 — 8,16 кДж/моль. Этим термином первоначально обозначались все такие силы, в современной науке он обычно применяется к силам, возникающим при поляризации молекул и образованиидиполей. Открыты Я. Д. ван дер Ваальсом в 1869 году.
К ван-дер-ваальсовым силам относятся взаимодействия между диполями (постоянными и индуцированными). Название связано с тем фактом, что эти силы являются причиной поправки на внутреннее давление в уравнении состояния реального газа Ван-дер-Ваальса. Эти взаимодействия в основном определяют силы, ответственные за формирование пространственной структуры биологических макромолекул.
Ван-дер-ваальсовы силы также возникают между частицей (макроскопической частицей или наночастицей) и молекулой и между двумя частицами.
Классификация ван-дер-ваальсовых сил
Ван-дер-ваальсовое взаимодействие состоит из трех типов слабых взаимодействий:
-
Ориентационные силы, диполь-дипольное притяжение. Осуществляется между молекулами, являющимися постоянными диполями. Примером может служить HCl в жидком и твердом состоянии. Энергия такого взаимодействия обратно пропорциональна кубу расстояния между диполями.
-
Дисперсионное притяжение (лондоновские силы). Взаимодействием между мгновенным и наведенным диполем. Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.
-
Индукционное притяжение. Взаимодействие между постоянным диполем и наведенным (индуцированным). Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.
Проявления в природе
-
Сцепление частиц малых астероидов, кольца́ Сатурна[5];
-
Способность гекконов взбираться по гладким поверхностям, например, по стеклу[6].
Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут бытьмежмолекулярными или внутримолекулярными.
Природа водородной связи
Часто водородную связь рассматривают как электростатическое взаимодействие, усиленное небольшим размером водорода, которое разрешает близость взаимодействующих диполей. Особенностями водородной связи, по которым её выделяют в отдельный вид, является её не очень высокая прочность[2], её распространенность и важность, особенно в органических соединениях[3], а также некоторые побочные эффекты, связанные с малыми размерами и отсутствием дополнительных электронов у водорода.
В настоящее время в рамках теории молекулярных орбиталей водородная связь рассматривается как частный случай ковалентной с делокализацией электронной плотности по цепи атомов и образованием трёхцентровых четырёхэлектронных связей (например, -H•••[F-H•••F]-).