- •1. История развития представлений о структуре атома. Теории Ломоносова и Дальтона. Модели атомов Томсона, Резерфорда, Бора.
- •5. Определение и характеристики химической связи. Теории Бутлерова, Косселя, Льюиса. Основные виды х.С.
- •6. Ковалентная связь. Обменный донорно-акцнпторный м-зм
- •7. Ионная связь
- •9.Комплексные соединения. Д-а взаимодействием молекул. Комплексообразование. Лиганды.
- •10. Природа хим связи в комплексах. Структура и свойства комплексных соединений. Изомерия комплексов. Химическая связь в комплексных соединениях и их строение
- •17.5. Химические свойства комплексных соединений
- •17.6. Изомерия комплексных соединений
- •11. Биологические важные комплексные соединения(гемоглобин, хлорофилл, витамин в12 и т.Д.)
- •12. Использование комплексных соединений в медицине, фармецевтике, промышленности.
- •13. Микроэлементы
- •14.Микроэлементы
- •15.Макроэлементы.
- •16.Микроэлементозы.А.П. Авцин
- •17. Микроэлементов. Микроэлементы в лекарственных растениях и продуктах питания.
5. Определение и характеристики химической связи. Теории Бутлерова, Косселя, Льюиса. Основные виды х.С.
Химическая связь — явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии системы.
При образовании ковалентной химической связи важную роль в уменьшении полной энергии играет обменное взаимодействие.
Типы связи: Металлическая связь,Ковалентная связь,Ионная связь,
Термин «химическое строение» впервые ввёл А. М. Бутлеров в 1861 году. Также он заложил основы теории химического строения. Главные положения этой теории следующие:
-
Атомы в молекулах соединены друг с другом в определённой последовательности. Изменение этой последовательности приводит к образованию нового вещества с новыми свойствами.
-
Соединение атомов происходит в соответствии с их валентностью.
Свойства веществ зависят не только от их состава, но и от «химического строения», то есть от порядка соединения атомов в молекулах и характера их взаимного влияния. Наиболее сильно влияют друг на друга атомы, непосредственно связанные между собой.
6. Ковалентная связь. Обменный донорно-акцнпторный м-зм
Ковалентная связь (атомная связь, гомеополярная связь) — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.
Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.
Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.
Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.
Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.
Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.
Электроны тем подвижнее, чем дальше они находятся от ядер.
Образование связи
Простая ковалентная связь образуется из двух неспаренных валентных электронов, по одному от каждого атома:
A· + ·В → А : В
Виды ковалентной связи
Существуют три вида ковалентной химической связи, отличающихся механизмом образования:
1. Простая ковалентная связь. Для ее образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными.
-
Если атомы, образующие простую ковалентную связь, одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществлённой электронной парой. Такая связь называется неполярной ковалентной связью. Такую связь имеют простые вещества, например: О2, N2, Cl2
-
Если соединение образуется между двумя различными неметаллами, то такое соединение называется ковалентной полярной связью.
2. Донорно-акцепторная связь. Для образования этого вида ковалентной связи оба электрона предоставляет один из атомов — донор. Второй из атомов, участвующий в образовании связи, называется акцептором. В образовавшейся молекуле формальный заряд донора увеличивается на единицу, а формальный заряд акцептора уменьшается на единицу.
σ-связь и π-связьСигма (σ)-, пи (π)-связи — приближенное описание видов ковалентных связей в молекулах различных соединений, σ-связь характеризуется тем, что плотность электронного облака максимальна вдоль оси, соединяющей ядра атомов. При образовании π-связи осуществляется так называемое боковое перекрывание электронных облаков, и плотность электронного облака максимальна «над» и «под» плоскостью σ-связи. Для примера возьмем этилен, ацетилен и бензол.
В молекуле этилена С2Н4 имеется двойная связь СН2=СН2, его электронная формула: Н:С::С:Н. Ядра всех атомов этилена расположены в одной плоскости. Три электронных облака каждого атома углерода образуют три ковалентные связи с другими атомами в одной плоскости (с углами между ними примерно 120°). Облако четвертого валентного электрона атома углерода располагается над и под плоскостью молекулы. Такие электронные облака обоих атомов углерода, частично перекрываясь выше и ниже плоскости молекулы, образуют вторую связь между атомами углерода. Первую, более прочную ковалентную связь между атомами углерода называют σ-связью; вторую, менее прочную ковалентную связь называют π-связью.
