
- •Механіка суцільного середовища
- •Кінематика суцільного середовища
- •Основні поняття і задачі механіки суцільного середовища
- •Способи задання руху суцільного середовища
- •Розділ 2 елементи гідродинаміки
- •2.1. Основні поняття і формули векторного аналізу
- •2.2. Рівняння неперервності руху ідеальної рідини
- •2.3. Рівняння Ейлера
- •2.4. Гідростатика
- •2.5. Умова відсутності конвекції
- •2.6. Рівняння Бернуллі
- •Основи теорії пружності (теорія деформації)
- •3.1. Вектор зміщення і деформований стан
- •3.2. Тензор деформації
- •3.3. Перетворення компонент тензора деформації при заміні системи відліку
- •3.4. Головні напрямки тензора деформації. Головні осі і головні деформації
- •3.5. Визначення компонент вектора зміщення через компоненти тензора деформації
- •3.6. Визначення зміщень через компоненти тензора відносного зміщення
- •Основи теорії пружності (теорія напружень)
- •4.1 Зовнішні сили. Вектор напруження. Напружений стан тіла
- •4.2. Тензор напружень
- •4.3. Диференціальні рівняння рівноваги пружного тіла. Симетричність тензора напружень
- •4.4. Перетворення компонент тензора напружень при повороті системи координат
- •4.5. Головні напруження і інваріанти тензора напружень
- •Основи теорії пружності (співвідношення між компонентами тензора напружень)
- •5.1. Узагальнений закон Гука
- •Основи теорії пружності (основні рівняння і задачі теорії пружності)
- •6.1. Основні рівняння теорії пружності
- •6.2. Основні задачі статики пружного тіла
- •6.3. Пряма і обернена задачі теорії пружності
- •6.4. Рівняння пружної рівноваги в зміщеннях
- •6.5. Основні рівняння в напруженнях
- •Застосовуючи до (6.32) оператор Лапласа, одержимо
- •6.6. Напівобернений метод Сен-Венана
- •6.7. Принцип Сен-Венана
- •Найпростіші задачі теорії пружності
- •Метод суперпозиції
- •Основи теорії пружності (плоска задача теорії пружності)
- •7.1. Плоска деформація
- •7.2. Плоский напружений стан
- •7.3. Узагальнений плоский напружений стан
- •7.4. Основні рівняння плоскої теорії пружності. Зведення до бігармонічної проблеми
- •7.5. Плоска задача в декартових координатах
- •Нехай функція напружень має вигляд полінома третього степеня
- •Виберемо функцію напружень у вигляді полінома четвертого степеня
- •Якщо розглядається друга гранична задача, то граничні умови мають вигляд
- •8.2. Зведення основної задачі до бігармонічної проблеми
- •8.3. Задачі, в яких напруження залежать тільки від
- •Задачі, в яких напруження залежать від і
- •Підставляючи (8.67) у (8.64), одержимо формули для напружень
- •Застосування функцій комплексної змінної до розв’язування задач плоскої теорії пружності
- •9.1. Комплексне подання функції напружень
- •Розглянемо основне рівняння плоскої теорії пружності
- •9.2. Комплексне подання компонент тензора напружень і вектора зміщень
- •9.3. Степінь визначеності і структура комплексних потенціалів
- •9.4. Перетворення рівнянь плоскої задачі теорії пружності при конформному відображенні
- •9.5. Двосторонній розтяг нескінченної площини з еліптичним отвором
- •Список літератури
Список літератури
-
Демидов С.П. Теория упругости. М.: Высшая школа,1979. 432 с.
-
Жермен П. Курс механики сплошных сред. М.: Высшая школа, 1983, 531с.
-
Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1965. 203 с.
-
Мінаєв О.А. Механіка суцільних середовищ. Київ: Вища освіта,
1995. 272 с.
-
Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. М.: Наука,1966. 707 с.
-
Седов Л.И. Механика сплошной среды. М: Наука, т.1, 1970. 492 с; т.2,
1970. 568 с.
-
Теребушко О.И. Основы теории упругости и пластичности. М.: Наука, 1984. 320 с.
-
Тимошенко С.П., Гудьер Дж. Теория упругости. М.: Наука, 1975. 576 с.
Навчальне видання
Сяський Андрій Олексійович
Бабич Степанія Михайлівна
Механіка суцільного середовища
Навчальний посібник для студентів
спеціальності «прикладна математика»