
- •Электрическая цепь и ее основные законы
- •Электромагнетизм и электромагнитная индукция
- •Электрические машины постоянного тока
- •Химические источники тока
- •Переменный ток
- •Трансформаторы и Реакторы
- •Электрические машины переменного тока
- •Физические основы работы электрических аппаратов
- •§1. Основные сведения о строении вещества и физической природе электричества
- •§ 2. Напряженность электрического поля, электрическое поле, электрический потенциал и напряжение
- •§ 3. Электрический ток и электропроводность вещества
- •§ 4. Электрическое сопротивление и проводимость
- •§ 5. Электродвижущая сила и напряжение источника электрической энергии
- •§ 6. Электрическая цепь и ее элементы
- •§ 7. Закон Ома
- •§ 8. Использование резисторов для регулирования тока в электрической цепи
- •Режимы работы электрической цепи
- •§ 10. Законы Кирхгофа
- •§ 11. Последовательное, параллельное и смешанное соединения резисторов (приемников электрической энергии)
- •§ 12. Мостовая схема соединения резисторов и ее применение
- •§ 13. Работа и мощность электрического тока
- •§ 14. Тепловое действие тока
- •§ 15. Передача электрической энергии по проводам
- •Электромагнетизм и электромагнитная индукция §16. Магнитное поле и его характеристики и свойства
- •§17. Магнитное поле проводника с током и способы его усиления
- •§18. Магнитные свойства различных веществ
- •§19. Магнитная цепь
- •§20. Электромагнитные силы, создаваемые магнитным полем
- •§21. Электромагнитная индукция
- •§22. Вихревые токи
- •§23. Самоиндукция
- •§24. Взаимоиндукция
- •Электрические машины постоянного тока §25. Процесс преобразования энергии в электрических машинах. Режимы их работы
- •§26. Принцип действия
- •§27. Основные части электрических машин и их назначение
- •§28. Обмотки якоря
- •§29. Реакция якоря
- •§30. Коммутация
- •§31. Основы работы генераторов
- •§32. Схемы генераторов и их характеристики
- •§33. Основы работы электродвигателей
- •§34. Схемы электродвигателей и их характеристики
- •§35. Пуск в ход электродвигателей постоянного тока
- •§36. Регулирование частоты вращения якоря электродвигателя
- •§37. Электрическое торможение
- •§38. Мощность и коэффициент полезного действия электрических машин
- •§39. Особенности работы машин постоянного тока при пульсирующем напряжении
- •Химические источники тока §40. Электрический ток в жидких проводниках
- •§41. Понятие о гальванических элементах
- •§42. Кислотные аккумуляторы
- •§43. Щелочные аккумуляторы, принцип действия и устройство
- •§44. Электрические характеристики аккумуляторов
- •§45. Способы соединения аккумуляторов в батареи
- •§46. Получение переменного тока
- •§47. Основные параметры переменного тока
- •§48. Векторные диаграммы
- •§49. Виды сопротивлений в электрической цепи переменного тока
- •§50. Активное сопротивление в цепи переменного тока
- •§51. Индуктивность в цепи переменного тока
- •§52. Конденсаторы, их назначение и устройство
- •§53. Емкость в цепи переменного тока
- •§54. Последовательное соединение активного сопротивления, индуктивности и емкости
- •§55. Параллельное соединение сопротивлений в цепи переменного тока
- •§56. Резонанс напряжений и резонанс токов
- •§57. Мощность переменного тока и коэффициент мощности
- •§58. Передача электрической энергии по проводам при переменном токе
- •§59. Трехфазный переменный ток
- •§60. Схема соединения «звездой»
- •§61. Схема соединения «треугольником»
- •§62. Мощность трехфазной системы
- •§63. Назначение и принцип действия трансформатора
- •§65. Режимы работы трансформатора и его характеристики
- •§66. Мощность, к. П. Д. И коэффициент мощности трансформатора
- •§67. Автотрансформатор и трехфазный трансформатор
- •§68. Трансформаторы для вентильных преобразователей
- •§69. Регулирование напряжения трансформаторов
- •§70. Реакторы
- •§71. Подключение трансформаторов и реакторов к источнику переменного тока
- •§72. Магнитные усилители
- •§73. Стабилизаторы напряжения
- •§74. Вращающееся магнитное поле
- •§75. Принцип действия асинхронного двигателя
- •§76. Асинхронный двигатель с короткозамкнутым ротором
- •§77. Асинхронный двигатель с фазным ротором
- •§78. Режимы работы асинхронных двигателей
- •§79. Характеристики асинхронных двигателей
- •§80. Пуск в ход асинхронных двигателей
- •§81. Регулирование частоты вращения асинхронных двигателей
- •§82. Однофазные и двухфазные асинхронные двигатели
- •§83. Асинхронный расщепитель фаз
- •§84. Асинхронный тахогенератор
- •§85. Сельсины
- •§86. Назначение и принцип действия синхронной машины
- •§87. Устройство синхронной машины
- •§88. Режимы работы синхронного генератора и его характеристики
- •§89. Синхронный двигатель, принцип действия и устройство синхронного двигателя
- •§90. Назначение и классификация электрических аппаратов
- •§91. Контакты электрических аппаратов
- •§92. Электрическая дуга и методы ее гашения
- •§93. Приводы электрических аппаратов
- •§94. Основы работы плавких предохранителей
- •§ 95. Назначение и типы электроизмерительных приборов
- •§ 96. Магнитоэлектрические приборы
- •§ 97. Электромагнитные приборы
- •§ 98. Электродинамические и ферродинамические приборы
- •§ 99. Индукционные приборы
- •§100. Логометры и электронные приборы
- •§101. Измерение тока и напряжения
- •§102. Измерение мощности и электрической энергии
- •§103. Измерение электрического сопротивления
- •§104. Измерение частоты переменного тока
- •§105. Измерение электрическими методами неэлектрических величин
§85. Сельсины
Принцип действия. Сельсины служат для синхронного поворота или вращения двух или нескольких осей, механически не связанных друг с другом. Одну из этих машин, механически соединенную с ведущей осью, называют датчиком, а другую, соединенную с ведомой осью (непосредственно или с помощью промежуточного двигателя),— приемником. При повороте ротора сельсина-датчика на какой-либо угол ?Д ротор сельсина-приемника поворачивается на такой же точно угол ?П. Следовательно, система из двух сельсинов стремится ликвидировать рассогласование между положениями роторов датчика и приемника и в идеальном случае свести его к нулю.
Сельсины имеют две обмотки: первичную, или обмотку возбуждения, и вторичную, или обмотку синхронизации. В зависимости от числа фаз обмотки возбуждения различают одно- и трехфазные сельсины. Обмотку синхронизации сельсинов обычно выполняют по типу трехфазной.
Принцип действия сельсина не зависит от места расположе,-ния каждой из обмоток. Однако чаще всего в сельсинах обмотку синхронизации размещают на статоре, а обмотку возбуждения — на роторе (для уменьшения числа контактных колец и повышения надежности работы).
Режимы работы. Различают два основных режима работы сельсинов — индикаторный и трансформаторный.
При индикаторном режиме (рис. 280, а) ротор сельсина-приемника П соединяют непосредственно с ведомой осью O2. Этот режим применяют при малом значении тормозного момента на ведомой оси, обычно в тех случаях, когда на оси укреплена хорошо уравновешенная стрелка индикатора (отсюда название — индикаторный). Обмотки возбуждения В датчика Д и приемника П включены в общую сеть переменного тока, а обмотки синхронизации соединены линией связи ЛС. Пульсирующие магнитные потоки, создаваемые обмотками возбуждения датчика и приемника, индуцируют в трех фазах обмоток синхронизации э. д. с. Если между роторами датчика и приемника имеется некоторый угол ? = ?д — ?п рассогласования, то по обмоткам синхронизации будут протекать токи, которые, взаимодействуя с потоком возбуждения, создают в датчике и приемнике синхронизирующие моменты. Эти моменты имеют противоположные направления и стремятся свести угол рассогласования к нулю. Обычно ротор датчика заторможен, поэтому его синхронизирующий момент воспринимается механизмом, поворачивающим ведущую ось О1; синхронизирующий же момент приемника поворачивает его ротор в ту же сторону, что и ротор датчика, и на тот же угол.
При трансформаторном режиме сигнал о наличии рассогласования между положениями роторов датчика и приемника подается через усилитель на исполнительный двигатель, который поворачивает ведомую ось и ротор сельсина-приемника, ликвидируя рассогласование.
Трансформаторный режим применяют в тех случаях, когда к ведомой оси приложен значительный тормозной момент, т. е. когда приходится поворачивать какой-либо механизм. При работе сельсинов в трансформаторном режиме (рис. 280, б) обмотка возбужде-
Рис.
280. Схемы включения сельсинов при работе
их в индикаторном (а) и трансформаторном
(б) режимах
ния В датчика Д, механически связанного с ведущей осью 01, подключается к сети однофазного тока, а обмотка возбуждения В приемника П — к усилителю У, подающему питание на обмотку управления двухфазного исполнительного двигателя ИД. Обмотки синхронизации обоих сельсинов соединены линией связи ЛС.
Переменный ток, проходящий по обмотке возбуждения датчика, создает в нем пульсирующий магнитный поток, который индуцирует э. д. с. в трех фазах обмотки синхронизации.
Так как обмотки синхронизации датчика и приемника соединены линией связи, по ним будет протекать ток, вследствие чего в приемнике создается свой пульсирующий магнитный поток. Если имеет место рассогласование положений роторов датчика и приемника, то этот поток индуцирует в обмотке возбуждения некоторую э. д. с, и на зажимах ее появляется выходное напряжение Uвых. Это напряжение через усилитель У подается на одну из обмоток статора исполнительного двигателя ИД, который поворачивает ведомую ось O2 совместно с ротором приемника. Когда рассогласование ликвидируется, выходное напряжение станет равным нулю и вращение ведомой оси прекратится.
Устройство. По конструкции сельсины разделяют на контактные, у которых обмотка ротора соединена с внешней цепью через контактные. кольца и щетки, и бесконтактные. Контактные сельсины (рис. 281) устроены так же, как асинхронные двигатели с фазным ротором малой мощности. Статор 1 и ротор 2 такого сельсина неявнополюсные, поэтому обе обмотки 3 и 4 — распределенные. Обмотка возбуждения расположена на роторе; ток к ней подводится через два контактных кольца 5. В некоторых конструкциях статор и ротор имеют явновыраженные полюсы, что обеспечивает повышение синхронизирующего момента. Основной недостаток контактных сельсинов — наличие контактных колец.
В бесконтактных сельсинах (рис. 282) обе обмотки расположены на статоре. Ротор бесконтактного сельсина представляет собой цилиндр 6 из ферромагнитного материала, разделенный немагнитной алюминиевой прослойкой 7 на две магнитно изолированные части — полюсы.
Рис.
281. Устройство контактного сельсина
Рис.
282. Устройство бесконтактного сельсина
С торцовых сторон сельсина расположены тороидальные сердечники 1, выполненные из листовой электротехнической стали. Внутренняя поверхность этих сердечников расположена над ротором, а к их внешней поверхности примыкают стержни внешнего магнитопровода 4. Однофазную обмотку возбуждения сельсина выполняют в виде двух дисковых катушек 2, расположенных с противоположных сторон статора 3 по оси сельсина между обмоткой синхронизации 5 и тороидальными сердечниками. В процессе работы сельсина пульсирующий магнитный поток возбуждения замыкается в его магнитной системе, сцепляясь с трехфазной обмоткой синхронизации на статоре. Путь, по которому происходит замыкание потока, показан на рис. 282 штриховой линией.
При повороте ротора изменяется положение оси потока относительно обмоток синхронизации, поэтому э. д. с, индуцируемая в фазах обмотки синхронизации, будет зависеть от угла поворота ротора так же, как и в контактных сельсинах.