
- •Электрическая цепь и ее основные законы
- •Электромагнетизм и электромагнитная индукция
- •Электрические машины постоянного тока
- •Химические источники тока
- •Переменный ток
- •Трансформаторы и Реакторы
- •Электрические машины переменного тока
- •Физические основы работы электрических аппаратов
- •§1. Основные сведения о строении вещества и физической природе электричества
- •§ 2. Напряженность электрического поля, электрическое поле, электрический потенциал и напряжение
- •§ 3. Электрический ток и электропроводность вещества
- •§ 4. Электрическое сопротивление и проводимость
- •§ 5. Электродвижущая сила и напряжение источника электрической энергии
- •§ 6. Электрическая цепь и ее элементы
- •§ 7. Закон Ома
- •§ 8. Использование резисторов для регулирования тока в электрической цепи
- •Режимы работы электрической цепи
- •§ 10. Законы Кирхгофа
- •§ 11. Последовательное, параллельное и смешанное соединения резисторов (приемников электрической энергии)
- •§ 12. Мостовая схема соединения резисторов и ее применение
- •§ 13. Работа и мощность электрического тока
- •§ 14. Тепловое действие тока
- •§ 15. Передача электрической энергии по проводам
- •Электромагнетизм и электромагнитная индукция §16. Магнитное поле и его характеристики и свойства
- •§17. Магнитное поле проводника с током и способы его усиления
- •§18. Магнитные свойства различных веществ
- •§19. Магнитная цепь
- •§20. Электромагнитные силы, создаваемые магнитным полем
- •§21. Электромагнитная индукция
- •§22. Вихревые токи
- •§23. Самоиндукция
- •§24. Взаимоиндукция
- •Электрические машины постоянного тока §25. Процесс преобразования энергии в электрических машинах. Режимы их работы
- •§26. Принцип действия
- •§27. Основные части электрических машин и их назначение
- •§28. Обмотки якоря
- •§29. Реакция якоря
- •§30. Коммутация
- •§31. Основы работы генераторов
- •§32. Схемы генераторов и их характеристики
- •§33. Основы работы электродвигателей
- •§34. Схемы электродвигателей и их характеристики
- •§35. Пуск в ход электродвигателей постоянного тока
- •§36. Регулирование частоты вращения якоря электродвигателя
- •§37. Электрическое торможение
- •§38. Мощность и коэффициент полезного действия электрических машин
- •§39. Особенности работы машин постоянного тока при пульсирующем напряжении
- •Химические источники тока §40. Электрический ток в жидких проводниках
- •§41. Понятие о гальванических элементах
- •§42. Кислотные аккумуляторы
- •§43. Щелочные аккумуляторы, принцип действия и устройство
- •§44. Электрические характеристики аккумуляторов
- •§45. Способы соединения аккумуляторов в батареи
- •§46. Получение переменного тока
- •§47. Основные параметры переменного тока
- •§48. Векторные диаграммы
- •§49. Виды сопротивлений в электрической цепи переменного тока
- •§50. Активное сопротивление в цепи переменного тока
- •§51. Индуктивность в цепи переменного тока
- •§52. Конденсаторы, их назначение и устройство
- •§53. Емкость в цепи переменного тока
- •§54. Последовательное соединение активного сопротивления, индуктивности и емкости
- •§55. Параллельное соединение сопротивлений в цепи переменного тока
- •§56. Резонанс напряжений и резонанс токов
- •§57. Мощность переменного тока и коэффициент мощности
- •§58. Передача электрической энергии по проводам при переменном токе
- •§59. Трехфазный переменный ток
- •§60. Схема соединения «звездой»
- •§61. Схема соединения «треугольником»
- •§62. Мощность трехфазной системы
- •§63. Назначение и принцип действия трансформатора
- •§65. Режимы работы трансформатора и его характеристики
- •§66. Мощность, к. П. Д. И коэффициент мощности трансформатора
- •§67. Автотрансформатор и трехфазный трансформатор
- •§68. Трансформаторы для вентильных преобразователей
- •§69. Регулирование напряжения трансформаторов
- •§70. Реакторы
- •§71. Подключение трансформаторов и реакторов к источнику переменного тока
- •§72. Магнитные усилители
- •§73. Стабилизаторы напряжения
- •§74. Вращающееся магнитное поле
- •§75. Принцип действия асинхронного двигателя
- •§76. Асинхронный двигатель с короткозамкнутым ротором
- •§77. Асинхронный двигатель с фазным ротором
- •§78. Режимы работы асинхронных двигателей
- •§79. Характеристики асинхронных двигателей
- •§80. Пуск в ход асинхронных двигателей
- •§81. Регулирование частоты вращения асинхронных двигателей
- •§82. Однофазные и двухфазные асинхронные двигатели
- •§83. Асинхронный расщепитель фаз
- •§84. Асинхронный тахогенератор
- •§85. Сельсины
- •§86. Назначение и принцип действия синхронной машины
- •§87. Устройство синхронной машины
- •§88. Режимы работы синхронного генератора и его характеристики
- •§89. Синхронный двигатель, принцип действия и устройство синхронного двигателя
- •§90. Назначение и классификация электрических аппаратов
- •§91. Контакты электрических аппаратов
- •§92. Электрическая дуга и методы ее гашения
- •§93. Приводы электрических аппаратов
- •§94. Основы работы плавких предохранителей
- •§ 95. Назначение и типы электроизмерительных приборов
- •§ 96. Магнитоэлектрические приборы
- •§ 97. Электромагнитные приборы
- •§ 98. Электродинамические и ферродинамические приборы
- •§ 99. Индукционные приборы
- •§100. Логометры и электронные приборы
- •§101. Измерение тока и напряжения
- •§102. Измерение мощности и электрической энергии
- •§103. Измерение электрического сопротивления
- •§104. Измерение частоты переменного тока
- •§105. Измерение электрическими методами неэлектрических величин
§44. Электрические характеристики аккумуляторов
За номинальную емкость для большинства кислотных аккумуляторов принимают емкость при десятичасовом режиме, а для большинства щелочных аккумуляторов — емкость при пятичасовом режиме, т. е. при разряде аккумулятора таким током, при котором он разряжается до номинального допустимого конечного напряжения (1,7—1,8 В для кислотных аккумуляторов и 1,0 В для щелочных) в течение соответственно 10 и 5 ч.
При увеличении разрядного тока емкость аккумулятора понижается. Например, аккумуляторы ТН-450 при номинальном разрядном токе 45 А разряжаются до напряжения 1,8 В за 10 ч, т. е. емкость их составляет 45 А*10 ч = 450 А*ч. Если разряжать такой аккумулятор током 68 А, то он разрядится до напряжения 1,8 В за 5ч и емкость его составит 68А * 5 ч = 340 А*ч.
При понижении температуры емкость аккумулятора уменьшается, так как понижается способность электролита проникать в поры пластин. С приближением температуры электролита к температуре замерзания минус 40—45 °С напряжение и емкость аккумулятора падают почти до нуля. При повышении температуры емкость аккумулятора увеличивается, однако при достижении 40— 50 °С усиливается саморазряд в аккумуляторах и сокращается срок их службы. В процессе эксплуатации аккумулятора при многократных зарядах и разрядах поры пластин постепенно закрываются, активная масса частично отпадает от пластин. Это приводит к снижению емкости аккумулятора.
Экономичность работы аккумулятора характеризуется его к. п. д. и коэффициентом отдачи по емкости. К. п. д. аккумулятора называется отношение количества энергии в киловатт-часах, полученной от него при разряде, к количеству энергии, затраченной при заряде. Для кислотных аккумуляторов к. п. д. равен 65—75%, для щелочных 47—50 %. Коэффициентом отдачи аккумулятора по емкости называется отношение количества электричества в ампер-часах, отданного при разряде аккумулятора, к количеству электричества, полученному при заряде. Значение его для кислотных аккумуляторов составляет 85—90 %, для щелочных — 65—70 %, поэтому экономичность работы щелочных аккумуляторов меньше, чем кислотных.
§45. Способы соединения аккумуляторов в батареи
В тех случаях, когда ток и напряжение отдельного источника электрической энергии (в том числе аккумулятора) являются недостаточными для нормальной работы электрических потребителей, применяют последовательное, параллельное и смешанное соединения таких источников.
Последовательное соединение. При последовательном соединении аккумуляторов отрицательный электрод первого аккумулятора соединяют с положительным электродом второго, отрицательный электрод второго — с положительным электродом третьего и т. д. (рис. 165, а). Нагрузку (приемник) присоединяют к положительному электроду первого и отрицательному электроду последнего аккумулятора.
При последовательном соединении аккумуляторов их электродвижущие силы согласно второму закону Кирхгофа складываются и результирующая э. д. с. равна сумме э. д. с. отдельных аккумуляторов. Следовательно, чем больше аккумуляторов включено в цепь, тем больше напряжение, под которым находятся приемники (рис. 166).
Эквивалентное внутреннее сопротивление последовательно соединенных аккумуляторов равно сумме их внутренних сопротивлений.
Аккумуляторные батареи составляются из ряда совершенно одинаковых аккумуляторов. При этом на заводе их подбирают
Рис.
165. Последовательное (а) и параллельное
(б) соединения аккумуляторов
Рис.
166. Напряжение, приложенное к приемнику,
при различном числе последовательно
соединенных аккумуляторов
так, чтобы все они имели одинаковые э. д. с. E = Eak и одинаковое внутреннее сопротивление Rak. Поэтому для батареи, состоящей из п аккумуляторов,
E = nEak; Rэкв= nRak
Параллельное соединение. При параллельном соединении все положительные электроды отдельных аккумуляторов соединяют вместе, и они образуют положительный полюс; все отрицательные электроды отдельных аккумуляторов также соединяют вместе, и они образуют общий отрицательный полюс (рис. 165,б). Нагрузку (приемник) присоединяют к общим отрицательному и положительному полюсам. При этом все аккумуляторы будут находиться под одинаковым напряжением U, а общий ток I равен сумме токов, отдаваемых отдельными аккумуляторами. При параллельном соединении п одинаковых аккумуляторов э. д. с. батареи E = Eak; ее внутреннее сопротивление R = Rak /n и ток I = nIak.
Смешанное соединение. В тех случаях, когда аккумуляторы не обеспечивают возможности получения необходимого тока и напряжения, применяют последовательно-параллельное (смешанное) их соединение (рис. 167). В данном случае в каждой из двух параллельных групп аккумуляторной батареи имеется по два последовательно соединенных аккумулятора.
Аккумуляторные батареи в большинстве случаев составляются из последовательно соединенных аккумуляторов. Смешанное и параллельное соединения аккумуляторов применяют редко, так
Рис.
167. Смешанное соединение аккумуляторов
как в этих случаях трудно обеспечить равномерное распределение тока между параллельными ветвями. Равенство токов I1 и I2 в отдельных ветвях будет иметь место только в том случае, если будут равны э. д. с. Е1 и Е2, действующие в этих ветвях, и их внутренние сопротивления Rэк1 = Rэк2.