
- •Электрическая цепь и ее основные законы
- •Электромагнетизм и электромагнитная индукция
- •Электрические машины постоянного тока
- •Химические источники тока
- •Переменный ток
- •Трансформаторы и Реакторы
- •Электрические машины переменного тока
- •Физические основы работы электрических аппаратов
- •§1. Основные сведения о строении вещества и физической природе электричества
- •§ 2. Напряженность электрического поля, электрическое поле, электрический потенциал и напряжение
- •§ 3. Электрический ток и электропроводность вещества
- •§ 4. Электрическое сопротивление и проводимость
- •§ 5. Электродвижущая сила и напряжение источника электрической энергии
- •§ 6. Электрическая цепь и ее элементы
- •§ 7. Закон Ома
- •§ 8. Использование резисторов для регулирования тока в электрической цепи
- •Режимы работы электрической цепи
- •§ 10. Законы Кирхгофа
- •§ 11. Последовательное, параллельное и смешанное соединения резисторов (приемников электрической энергии)
- •§ 12. Мостовая схема соединения резисторов и ее применение
- •§ 13. Работа и мощность электрического тока
- •§ 14. Тепловое действие тока
- •§ 15. Передача электрической энергии по проводам
- •Электромагнетизм и электромагнитная индукция §16. Магнитное поле и его характеристики и свойства
- •§17. Магнитное поле проводника с током и способы его усиления
- •§18. Магнитные свойства различных веществ
- •§19. Магнитная цепь
- •§20. Электромагнитные силы, создаваемые магнитным полем
- •§21. Электромагнитная индукция
- •§22. Вихревые токи
- •§23. Самоиндукция
- •§24. Взаимоиндукция
- •Электрические машины постоянного тока §25. Процесс преобразования энергии в электрических машинах. Режимы их работы
- •§26. Принцип действия
- •§27. Основные части электрических машин и их назначение
- •§28. Обмотки якоря
- •§29. Реакция якоря
- •§30. Коммутация
- •§31. Основы работы генераторов
- •§32. Схемы генераторов и их характеристики
- •§33. Основы работы электродвигателей
- •§34. Схемы электродвигателей и их характеристики
- •§35. Пуск в ход электродвигателей постоянного тока
- •§36. Регулирование частоты вращения якоря электродвигателя
- •§37. Электрическое торможение
- •§38. Мощность и коэффициент полезного действия электрических машин
- •§39. Особенности работы машин постоянного тока при пульсирующем напряжении
- •Химические источники тока §40. Электрический ток в жидких проводниках
- •§41. Понятие о гальванических элементах
- •§42. Кислотные аккумуляторы
- •§43. Щелочные аккумуляторы, принцип действия и устройство
- •§44. Электрические характеристики аккумуляторов
- •§45. Способы соединения аккумуляторов в батареи
- •§46. Получение переменного тока
- •§47. Основные параметры переменного тока
- •§48. Векторные диаграммы
- •§49. Виды сопротивлений в электрической цепи переменного тока
- •§50. Активное сопротивление в цепи переменного тока
- •§51. Индуктивность в цепи переменного тока
- •§52. Конденсаторы, их назначение и устройство
- •§53. Емкость в цепи переменного тока
- •§54. Последовательное соединение активного сопротивления, индуктивности и емкости
- •§55. Параллельное соединение сопротивлений в цепи переменного тока
- •§56. Резонанс напряжений и резонанс токов
- •§57. Мощность переменного тока и коэффициент мощности
- •§58. Передача электрической энергии по проводам при переменном токе
- •§59. Трехфазный переменный ток
- •§60. Схема соединения «звездой»
- •§61. Схема соединения «треугольником»
- •§62. Мощность трехфазной системы
- •§63. Назначение и принцип действия трансформатора
- •§65. Режимы работы трансформатора и его характеристики
- •§66. Мощность, к. П. Д. И коэффициент мощности трансформатора
- •§67. Автотрансформатор и трехфазный трансформатор
- •§68. Трансформаторы для вентильных преобразователей
- •§69. Регулирование напряжения трансформаторов
- •§70. Реакторы
- •§71. Подключение трансформаторов и реакторов к источнику переменного тока
- •§72. Магнитные усилители
- •§73. Стабилизаторы напряжения
- •§74. Вращающееся магнитное поле
- •§75. Принцип действия асинхронного двигателя
- •§76. Асинхронный двигатель с короткозамкнутым ротором
- •§77. Асинхронный двигатель с фазным ротором
- •§78. Режимы работы асинхронных двигателей
- •§79. Характеристики асинхронных двигателей
- •§80. Пуск в ход асинхронных двигателей
- •§81. Регулирование частоты вращения асинхронных двигателей
- •§82. Однофазные и двухфазные асинхронные двигатели
- •§83. Асинхронный расщепитель фаз
- •§84. Асинхронный тахогенератор
- •§85. Сельсины
- •§86. Назначение и принцип действия синхронной машины
- •§87. Устройство синхронной машины
- •§88. Режимы работы синхронного генератора и его характеристики
- •§89. Синхронный двигатель, принцип действия и устройство синхронного двигателя
- •§90. Назначение и классификация электрических аппаратов
- •§91. Контакты электрических аппаратов
- •§92. Электрическая дуга и методы ее гашения
- •§93. Приводы электрических аппаратов
- •§94. Основы работы плавких предохранителей
- •§ 95. Назначение и типы электроизмерительных приборов
- •§ 96. Магнитоэлектрические приборы
- •§ 97. Электромагнитные приборы
- •§ 98. Электродинамические и ферродинамические приборы
- •§ 99. Индукционные приборы
- •§100. Логометры и электронные приборы
- •§101. Измерение тока и напряжения
- •§102. Измерение мощности и электрической энергии
- •§103. Измерение электрического сопротивления
- •§104. Измерение частоты переменного тока
- •§105. Измерение электрическими методами неэлектрических величин
§33. Основы работы электродвигателей
Э. д. с. и ток нагрузки электродвигателя. Э. д. с. электродвигателя определяется по той же формуле, что и для генератора [см. формулу (59)].
Ток Iя в цепи обмотки якоря электродвигателя (ток нагрузки) определяется разностью питающего напряжения U и э. д. с. Е, которые направлены по контуру цепи якоря встречно (см. рис. 69, а). Поэтому согласно второму закону Кирхгофа получим:
U – E = Iя?Rя
откуда
Iя = (U – E) / ?Rя (64)
Из формулы (64) следует, что от э. д. с. Е зависит сила тока Iя и, следовательно, мощность, потребляемая двигателем. Если э. д. с. уменьшается, например, при уменьшении частоты вращения п (в результате возрастания механической нагрузки на валу) или магнитного потока Ф, то возрастает ток Iя и мощность, потребляемая электродвигателем.
Частота вращения и вращающий электромагнитный момент. Формулу для частоты вращения электродвигателя можно получить из формулы (59), если подставить в нее э. д. с. E = U – Iя ? Rя:
n = E / (cEФ) = (U – Iя ? Rя) / (cEФ) (65)
Электромагнитный вращающий момент электродвигателя определяется по той же формуле, что и электромагнитный тормозной момент генератора [см. формулу (63')]. При работе электродвигателя под нагрузкой на его вал, кроме вращающего электромагнитного момента М, действует еще противоположно направленный внешний тормозной момент Мвн (см. рис. 68, в), создаваемый приводимым им в движение механизмом. Например, в грузоподъемных механизмах поднимаемый груз оказывает сопротивление вращению якоря электродвигателя, который тянет трос с подвешенным к нему грузом. При работе электровозов и тепловозов масса поезда и самого локомотива, различные виды трения (колес о рельсы, осей в буксовых подшипниках локомотива и вагонов, различных движущихся частей в локомотиве и его тяговых двигателях), а также давление воздуха на торцовую поверхность локомотива и вагонов создают сопротивление движению поезда, которое приходится преодолевать тяговым двигателям этих локомотивов. Чем больше масса состава, скорость движения или подъем, по которому следует поезд, тем больше сопротивление, оказываемое вращению тяговых двигателей локомотива.
В зависимости от значений этих моментов якорь электродвигателя ускоряется (при М > Мвн), замедляется (при М < МВН) или вращается с постоянной частотой (при М = МВН). Следовательно, при равномерном вращении якоря (после окончания периода разгона или торможения) электромагнитный вращающий момент М определяется тормозным внешним моментом МВН, приложенным к его валу. Например, при увеличении внешнего момента МВН равновесие моментов нарушается и частота п вращения якоря уменьшается. Это вызывает уменьшение э. д. с. E, индуцируемой в обмотке якоря, и, следовательно, увеличение тока Iя и электромагнитного момента М. Указанный процесс продолжается до тех пор, пока моменты М и МВН не уравняются. После этого якорь будет снова вращаться с постоянной частотой, несколько меньшей, чем до увеличения момента МВН. Следовательно, электродвигатели обладают свойством саморегулирования: при увеличении внешнего момента МВН приложенного к валу, автоматически возрастает ток в обмотке якоря и электромагнитный момент М, пока не будет обеспечено условие М = МВН.
Процесс изменения момента М при увеличении момента МВН можно объяснить также исходя из энергетических соотношений. При увеличении внешнего момента МВН увеличивается механическая энергия, которую электродвигатель отдает приводимой во вращение колесной паре или производственному механизму. Следовательно, должна увеличиться электрическая энергия, потребляемая двигателем от источника (контактной сети, тепловозного генератора), т. е. ток Iя, поступающей в обмотку якоря, и создаваемый им момент М.
Из рассмотренных условий изменения момента М при увеличении или уменьшении момента МВН следует, что ток Iя в обмотке якоря зависит от механической нагрузки на валу электродвигателя. Чем больше тормозной момент МВН, приложенный к валу, тем больше должен быть ток Iя, чтобы создать электромагнитный вращающий момент М ? МВН Из формулы M = cMФ Iя можно получить
Iя = M / (cEФ) ? Мвн / (cEФ) (66)
По этой причине ток обмотки якоря часто называют током нагрузки электродвигателя.
Из формулы (66) следует также, что ток Iя зависит от магнитного потока Ф. Физически это объясняется следующим образом. Если уменьшить поток Ф, то должны уменьшиться электромагнитный момент М и э. д. с. в обмотке якоря Е. Однако это сейчас же приведет к увеличению тока Iя, который будет возрастать до тех пор, пока момент М не уравняется с внешним моментом МВН.