
- •Электрическая цепь и ее основные законы
- •Электромагнетизм и электромагнитная индукция
- •Электрические машины постоянного тока
- •Химические источники тока
- •Переменный ток
- •Трансформаторы и Реакторы
- •Электрические машины переменного тока
- •Физические основы работы электрических аппаратов
- •§1. Основные сведения о строении вещества и физической природе электричества
- •§ 2. Напряженность электрического поля, электрическое поле, электрический потенциал и напряжение
- •§ 3. Электрический ток и электропроводность вещества
- •§ 4. Электрическое сопротивление и проводимость
- •§ 5. Электродвижущая сила и напряжение источника электрической энергии
- •§ 6. Электрическая цепь и ее элементы
- •§ 7. Закон Ома
- •§ 8. Использование резисторов для регулирования тока в электрической цепи
- •Режимы работы электрической цепи
- •§ 10. Законы Кирхгофа
- •§ 11. Последовательное, параллельное и смешанное соединения резисторов (приемников электрической энергии)
- •§ 12. Мостовая схема соединения резисторов и ее применение
- •§ 13. Работа и мощность электрического тока
- •§ 14. Тепловое действие тока
- •§ 15. Передача электрической энергии по проводам
- •Электромагнетизм и электромагнитная индукция §16. Магнитное поле и его характеристики и свойства
- •§17. Магнитное поле проводника с током и способы его усиления
- •§18. Магнитные свойства различных веществ
- •§19. Магнитная цепь
- •§20. Электромагнитные силы, создаваемые магнитным полем
- •§21. Электромагнитная индукция
- •§22. Вихревые токи
- •§23. Самоиндукция
- •§24. Взаимоиндукция
- •Электрические машины постоянного тока §25. Процесс преобразования энергии в электрических машинах. Режимы их работы
- •§26. Принцип действия
- •§27. Основные части электрических машин и их назначение
- •§28. Обмотки якоря
- •§29. Реакция якоря
- •§30. Коммутация
- •§31. Основы работы генераторов
- •§32. Схемы генераторов и их характеристики
- •§33. Основы работы электродвигателей
- •§34. Схемы электродвигателей и их характеристики
- •§35. Пуск в ход электродвигателей постоянного тока
- •§36. Регулирование частоты вращения якоря электродвигателя
- •§37. Электрическое торможение
- •§38. Мощность и коэффициент полезного действия электрических машин
- •§39. Особенности работы машин постоянного тока при пульсирующем напряжении
- •Химические источники тока §40. Электрический ток в жидких проводниках
- •§41. Понятие о гальванических элементах
- •§42. Кислотные аккумуляторы
- •§43. Щелочные аккумуляторы, принцип действия и устройство
- •§44. Электрические характеристики аккумуляторов
- •§45. Способы соединения аккумуляторов в батареи
- •§46. Получение переменного тока
- •§47. Основные параметры переменного тока
- •§48. Векторные диаграммы
- •§49. Виды сопротивлений в электрической цепи переменного тока
- •§50. Активное сопротивление в цепи переменного тока
- •§51. Индуктивность в цепи переменного тока
- •§52. Конденсаторы, их назначение и устройство
- •§53. Емкость в цепи переменного тока
- •§54. Последовательное соединение активного сопротивления, индуктивности и емкости
- •§55. Параллельное соединение сопротивлений в цепи переменного тока
- •§56. Резонанс напряжений и резонанс токов
- •§57. Мощность переменного тока и коэффициент мощности
- •§58. Передача электрической энергии по проводам при переменном токе
- •§59. Трехфазный переменный ток
- •§60. Схема соединения «звездой»
- •§61. Схема соединения «треугольником»
- •§62. Мощность трехфазной системы
- •§63. Назначение и принцип действия трансформатора
- •§65. Режимы работы трансформатора и его характеристики
- •§66. Мощность, к. П. Д. И коэффициент мощности трансформатора
- •§67. Автотрансформатор и трехфазный трансформатор
- •§68. Трансформаторы для вентильных преобразователей
- •§69. Регулирование напряжения трансформаторов
- •§70. Реакторы
- •§71. Подключение трансформаторов и реакторов к источнику переменного тока
- •§72. Магнитные усилители
- •§73. Стабилизаторы напряжения
- •§74. Вращающееся магнитное поле
- •§75. Принцип действия асинхронного двигателя
- •§76. Асинхронный двигатель с короткозамкнутым ротором
- •§77. Асинхронный двигатель с фазным ротором
- •§78. Режимы работы асинхронных двигателей
- •§79. Характеристики асинхронных двигателей
- •§80. Пуск в ход асинхронных двигателей
- •§81. Регулирование частоты вращения асинхронных двигателей
- •§82. Однофазные и двухфазные асинхронные двигатели
- •§83. Асинхронный расщепитель фаз
- •§84. Асинхронный тахогенератор
- •§85. Сельсины
- •§86. Назначение и принцип действия синхронной машины
- •§87. Устройство синхронной машины
- •§88. Режимы работы синхронного генератора и его характеристики
- •§89. Синхронный двигатель, принцип действия и устройство синхронного двигателя
- •§90. Назначение и классификация электрических аппаратов
- •§91. Контакты электрических аппаратов
- •§92. Электрическая дуга и методы ее гашения
- •§93. Приводы электрических аппаратов
- •§94. Основы работы плавких предохранителей
- •§ 95. Назначение и типы электроизмерительных приборов
- •§ 96. Магнитоэлектрические приборы
- •§ 97. Электромагнитные приборы
- •§ 98. Электродинамические и ферродинамические приборы
- •§ 99. Индукционные приборы
- •§100. Логометры и электронные приборы
- •§101. Измерение тока и напряжения
- •§102. Измерение мощности и электрической энергии
- •§103. Измерение электрического сопротивления
- •§104. Измерение частоты переменного тока
- •§105. Измерение электрическими методами неэлектрических величин
§ 2. Напряженность электрического поля, электрическое поле, электрический потенциал и напряжение
Напряженность электрического поля. Физическая природа электрического поля и его графическое изображение. В пространстве вокруг электрически заряженного тела существует электрическое поле, представляющее собой один из видов материи. Электрическое поле обладает запасом электрической энергии, которая проявляется в виде электрических сил, действующих на находящиеся в поле заряженные тела.
Рис.
4. Простейшие электрические поля: а –
одиночных положительного и отрицательного
зарядов; б – двух разноименных зарядов;
в – двух одноименных зарядов; г – двух
параллельных и разноименно заряженныx
пластин (однородное поле)
Электрическое поле условно изображают в виде электрических силовых линий, которые показывают направления действия электрических сил, создаваемых полем. Принято направлять силовые линии в ту сторону, в которую двигалась бы в электрическом поле положительно заряженная частица. Как показано на рис. 4, электрические силовые линии расходятся в разные стороны от положительно заряженных тел и сходятся у тел, обладающих отрицательным зарядом. Поле, созданное двумя плоскими разноименно заряженными параллельными пластинами (рис. 4, г), называется однородным . Электрическое поле можно сделать видимым, если поместить в него взвешенные в жидком масле частички гипса: они поворачиваются вдоль поля, располагаясь по его силовым линиям (рис. 5).
Напряженность электрического поля. Электрическое поле действует на внесенный в него заряд q (рис. 6) с некоторой силой F. Следовательно, об интенсивности электрического поля можно судить по значению силы, с которой притягивается или отталкивается некоторый электрический заряд, принятый за единицу. В электротехнике интенсивность поля характеризуют напряженностью электрического поля Е. Под напряженностью понимают отношение силы F, действующей на заряженное тело в данной точке поля, к заряду q этого тела:
E = F / q (1)
Рис.
5. Картина распределения силовых линий
электрического поля: а – заряженный
шар; б – разноименно заряженные шары;
в – разноименно заряженные параллельные
пластины
Поле с большой напряженностью Е изображается графически силовыми линиями большой густоты; поле с малой напряженностью — редко расположенными силовыми линиями. По мере удаления от заряженного тела силовые линии электрического поля располагаются реже, т. е. напряженность поля уменьшается (см. рис. 4 а,б и в). Только в однородном электрическом поле (см. рис. 4, г) напряженность одинакова во всех его точках.
Рис.
6. Схема действия электрического поля
на внесенный в него электрический заряд
q
Электрический потенциал. Электрическое поле обладает определенным запасом энергии, т. е. способностью совершать работу. Как известно, энергию можно также накопить в пружине, для чего ее нужно сжать или растянуть. За счет этой энергии можно получить определенную работу. Если освободить один из концов пружины, то он сможет переместить на некоторое расстояние связанное с этим концом тело. Точно так же энергия электрического поля может быть реализована, если внести в него какой-либо заряд. Под действием сил поля этот заряд будет перемещаться по направлению силовых линий, совершая определенную работу. Для характеристики энергии, запасенной в каждой точке электрического поля, введено специальное понятие — электрический потенциал. Электрический потенциал ? поля в данной точке равен работе, которую могут совершить силы этого поля при перемещении единицы положительного заряда из этой точки за пределы поля. Понятие электрического потенциала аналогично понятию уровня для различных точек земной поверхности. Очевидно, что для подъема локомотива в точку Б (рис. 7) нужно затратить большую работу, чем для подъема его в точку А. Поэтому локомотив, поднятый на уровень Н2, при спуске сможет совершить большую работу, чем локомотив, поднятый на уровень Н2 За нулевой уровень, от которого производится отсчет высоты, принимают обычно уровень моря.
Рис.
7. Разность уровней в поле земного
тяготения
Рис.
8. Разность потенциалов U между точками
А и Б электрического поля определяет
работу, которая затрачивается на
перемещение заряда q между этими точками
Точно так же за нулевой потенциал условно принимают потенциал, который имеет поверхность земли. Электрическое напряжение. Различные точки электрического поля обладают разными потенциалами. Обычно нас мало интересует абсолютная величина потенциалов отдельных точек электрического поля, но нам весьма важно знать разность потенциалов ?1—?2 между двумя точками поля А и Б (рис. 8). Разность потенциалов ?1 и ?2 двух точек поля характеризует собой работу, затрачиваемую силами поля на перемещение единичного заряда из одной точки поля с большим потенциалом в другую точку с меньшим потенциалом. Точно так же нас на практике мало интересуют абсолютные высоты Н1и Н2 точек А и Б над уровнем моря (см. рис. 7), но для нас важно знать разность уровней И между этими точками, так как на подъем локомотива из точки А в точку Б надо затратить работу, зависящую от величины Я. Разность потенциалов между двумя точками поля носит название электрического напряжения. Электрическое напряжение обозначают буквой U (и). Оно численно равно отношению работы W, которую нужно затратить на перемещение положительного заряда q из одной точки поля в другую, к этому заряду, т. е.
U = W / q (2)
Следовательно, напряжение U, действующее между различными точками электрического поля, характеризует запасенную в этом поле энергию, которая может быть отдана путем перемещения между этими точками электрических зарядов. Электрическое напряжение — важнейшая электрическая величина, позволяющая вычислять работу и мощность, развиваемую при перемещении зарядов в электрическом поле. Единицей электрического напряжения служит вольт (В). В технике напряжение иногда измеряют в тысячных долях вольта — милливольтах (мВ) и миллионных долях вольта — микровольтах (мкВ). Для измерения высоких напряжений пользуются более крупными единицами — киловольтами (кВ) — тысячами вольт. Напряженность электрического поля при однородном поле представляет собой отношение электрического напряжения, действующего между двумя точками поля, к расстоянию l между этими точками:
E = U / l (3)
Напряженность электрического поля измеряют в вольтах на метр (В/м). При напряженности поля в 1 В/м на заряд в 1 Кл действует сила, равная 1 ньютону (1 Н). В некоторых случаях применяют более крупные единицы измерения напряженности поля В/см (100 В/м) и В/мм (1000 В/м).