
- •Электрическая цепь и ее основные законы
- •Электромагнетизм и электромагнитная индукция
- •Электрические машины постоянного тока
- •Химические источники тока
- •Переменный ток
- •Трансформаторы и Реакторы
- •Электрические машины переменного тока
- •Физические основы работы электрических аппаратов
- •§1. Основные сведения о строении вещества и физической природе электричества
- •§ 2. Напряженность электрического поля, электрическое поле, электрический потенциал и напряжение
- •§ 3. Электрический ток и электропроводность вещества
- •§ 4. Электрическое сопротивление и проводимость
- •§ 5. Электродвижущая сила и напряжение источника электрической энергии
- •§ 6. Электрическая цепь и ее элементы
- •§ 7. Закон Ома
- •§ 8. Использование резисторов для регулирования тока в электрической цепи
- •Режимы работы электрической цепи
- •§ 10. Законы Кирхгофа
- •§ 11. Последовательное, параллельное и смешанное соединения резисторов (приемников электрической энергии)
- •§ 12. Мостовая схема соединения резисторов и ее применение
- •§ 13. Работа и мощность электрического тока
- •§ 14. Тепловое действие тока
- •§ 15. Передача электрической энергии по проводам
- •Электромагнетизм и электромагнитная индукция §16. Магнитное поле и его характеристики и свойства
- •§17. Магнитное поле проводника с током и способы его усиления
- •§18. Магнитные свойства различных веществ
- •§19. Магнитная цепь
- •§20. Электромагнитные силы, создаваемые магнитным полем
- •§21. Электромагнитная индукция
- •§22. Вихревые токи
- •§23. Самоиндукция
- •§24. Взаимоиндукция
- •Электрические машины постоянного тока §25. Процесс преобразования энергии в электрических машинах. Режимы их работы
- •§26. Принцип действия
- •§27. Основные части электрических машин и их назначение
- •§28. Обмотки якоря
- •§29. Реакция якоря
- •§30. Коммутация
- •§31. Основы работы генераторов
- •§32. Схемы генераторов и их характеристики
- •§33. Основы работы электродвигателей
- •§34. Схемы электродвигателей и их характеристики
- •§35. Пуск в ход электродвигателей постоянного тока
- •§36. Регулирование частоты вращения якоря электродвигателя
- •§37. Электрическое торможение
- •§38. Мощность и коэффициент полезного действия электрических машин
- •§39. Особенности работы машин постоянного тока при пульсирующем напряжении
- •Химические источники тока §40. Электрический ток в жидких проводниках
- •§41. Понятие о гальванических элементах
- •§42. Кислотные аккумуляторы
- •§43. Щелочные аккумуляторы, принцип действия и устройство
- •§44. Электрические характеристики аккумуляторов
- •§45. Способы соединения аккумуляторов в батареи
- •§46. Получение переменного тока
- •§47. Основные параметры переменного тока
- •§48. Векторные диаграммы
- •§49. Виды сопротивлений в электрической цепи переменного тока
- •§50. Активное сопротивление в цепи переменного тока
- •§51. Индуктивность в цепи переменного тока
- •§52. Конденсаторы, их назначение и устройство
- •§53. Емкость в цепи переменного тока
- •§54. Последовательное соединение активного сопротивления, индуктивности и емкости
- •§55. Параллельное соединение сопротивлений в цепи переменного тока
- •§56. Резонанс напряжений и резонанс токов
- •§57. Мощность переменного тока и коэффициент мощности
- •§58. Передача электрической энергии по проводам при переменном токе
- •§59. Трехфазный переменный ток
- •§60. Схема соединения «звездой»
- •§61. Схема соединения «треугольником»
- •§62. Мощность трехфазной системы
- •§63. Назначение и принцип действия трансформатора
- •§65. Режимы работы трансформатора и его характеристики
- •§66. Мощность, к. П. Д. И коэффициент мощности трансформатора
- •§67. Автотрансформатор и трехфазный трансформатор
- •§68. Трансформаторы для вентильных преобразователей
- •§69. Регулирование напряжения трансформаторов
- •§70. Реакторы
- •§71. Подключение трансформаторов и реакторов к источнику переменного тока
- •§72. Магнитные усилители
- •§73. Стабилизаторы напряжения
- •§74. Вращающееся магнитное поле
- •§75. Принцип действия асинхронного двигателя
- •§76. Асинхронный двигатель с короткозамкнутым ротором
- •§77. Асинхронный двигатель с фазным ротором
- •§78. Режимы работы асинхронных двигателей
- •§79. Характеристики асинхронных двигателей
- •§80. Пуск в ход асинхронных двигателей
- •§81. Регулирование частоты вращения асинхронных двигателей
- •§82. Однофазные и двухфазные асинхронные двигатели
- •§83. Асинхронный расщепитель фаз
- •§84. Асинхронный тахогенератор
- •§85. Сельсины
- •§86. Назначение и принцип действия синхронной машины
- •§87. Устройство синхронной машины
- •§88. Режимы работы синхронного генератора и его характеристики
- •§89. Синхронный двигатель, принцип действия и устройство синхронного двигателя
- •§90. Назначение и классификация электрических аппаратов
- •§91. Контакты электрических аппаратов
- •§92. Электрическая дуга и методы ее гашения
- •§93. Приводы электрических аппаратов
- •§94. Основы работы плавких предохранителей
- •§ 95. Назначение и типы электроизмерительных приборов
- •§ 96. Магнитоэлектрические приборы
- •§ 97. Электромагнитные приборы
- •§ 98. Электродинамические и ферродинамические приборы
- •§ 99. Индукционные приборы
- •§100. Логометры и электронные приборы
- •§101. Измерение тока и напряжения
- •§102. Измерение мощности и электрической энергии
- •§103. Измерение электрического сопротивления
- •§104. Измерение частоты переменного тока
- •§105. Измерение электрическими методами неэлектрических величин
§20. Электромагнитные силы, создаваемые магнитным полем
Проводник с током в магнитном поле. Энергия, заключенная в магнитном поле, может проявлять себя в виде электромагнитных сил, которые возникают при взаимодействии магнитного поля с движущимися электрическими зарядами. Электромагнитная сила, возникающая при движении электрического заряда в магнитном поле, действует на него в направлении, перпендикулярном движению и направлению силовых линий, и стремится вытолкнуть заряд за пределы поля (см. рис. 34).
Если поместить в магнитное поле проводник с током I, то между электронами, проходящими по проводнику, и магнитным полем возникнут электромагнитные силы, которые, складываясь, образуют результирующую силу F, стремящуюся вытолкнуть проводник из магнитного поля (рис. 48). Электромагнитная сила определяется законом Ампера. Он формулируется следующим образом. Электромагнитная сила, действующая на проводник с током, находящийся в магнитном поле и расположенный перпендикулярно направлению поля, равна произведению силы тока I, индукции магнитного поля В и длины проводника l:
F = IBl (48)
Если проводник расположен под углом ? к силовым магнитным
F = BIlsin? (48′)
Чтобы получить F в ньютонах, надо В брать в теслах, I — в амперax и l — в метрах.
Направление действия силы F обычно определяют по правилу левой руки: ладонь левой руки нужно расположить так, чтобы магнитные линии входили в нее и четыре вытянутых пальца совместить с направлением тока, тогда расположенный под прямым углом большой палец укажет направление действия электромагнитной силы. Сила F возникает только в том случае, если проводник расположен перпендикулярно или под некоторым углом к магнитным силовым линиям поля. Если же проводник расположен вдоль силовых линий поля, то электромагнитная сила будет равна нулю.
Для того чтобы изменить направление электромагнитной силы, как следует из правила левой руки, необходимо изменить направление тока в проводнике или же направление магнитного поля.
Возникновение электромагнитной силы F при взаимодействии проводника с током и магнитного поля можно наглядно представить как результат взаимодействия двух магнитных полей. Как известно, вокруг проводника с током возникает свое собственное круговое магнитное поле (рис. 49), которое будет складываться с внешним магнитным полем (например, постоянного магнита), в которое помещен проводник с током. При этом справа от проводника, где силовые линии поля проводника совпадают с линиями внешнего поля, происходит сгущение силовых линий; слева от проводника, где силовые линии поля проводника направлены навстречу линиям внешнего поля, происходит разрежение силовых линий. Магнитные силовые линии обладают свойством упругости, напоминающим свойство резиновых нитей. Стремясь сократиться по длине, они будут выталкивать проводник из области сгущения силовых линий в сторону их разрежения, т. е. справа налево. В результате возникает электромагнитная сила F.
Рис.
48. Электромагнитная сила, действующая
в магнитном поле на проводник с током
Рис.
49. Сгущение и разрежение магнитных
силовых линий при наличии в магнитном
поле проводника с током.
Рис. 50.Электромагнитные силы,действующие в магнитном поле на виток или катушку с током.
Виток с током в магнитном поле. Если поместить в магнитное поле не проводник, а виток (или катушку) с током и расположить его вертикально (рис. 50, а), то, применяя правило левой руки к верхней и нижней сторонам витка, получим, что электромагнитные силы F, действующие на них, будут направлены в разные стороны. В результате действия этих двух сил возникает электромагнитный вращающий момент М, который вызовет поворот витка, в данном случае по часовой стрелке. Этот момент
M = FD (49)
где D — расстояние между сторонами витка. Виток будет поворачиваться в магнитном поле до тех пор, пока он не займет положение, перпендикулярное магнитным силовым линиям поля (рис. 50, б). При таком положении через виток будет проходить наибольший магнитный поток. Следовательно, виток или катушка с током, внесенные во внешнее магнитное поле, всегда стремятся занять такое положение, чтобы через виток проходил возможно больший магнитный поток. Свойство витка и катушки с током поворачиваться в магнитном поле широко используется в электротехнике; электрические двигатели и ряд электроизмерительных приборов работают по этому принципу.
Для увеличения вращающего момента в электрических двигателях применяют не один виток, а несколько. Эти витки, соединенные соответствующим образом, образуют обмотку якоря электродвигателя.