
- •Электрическая цепь и ее основные законы
- •Электромагнетизм и электромагнитная индукция
- •Электрические машины постоянного тока
- •Химические источники тока
- •Переменный ток
- •Трансформаторы и Реакторы
- •Электрические машины переменного тока
- •Физические основы работы электрических аппаратов
- •§1. Основные сведения о строении вещества и физической природе электричества
- •§ 2. Напряженность электрического поля, электрическое поле, электрический потенциал и напряжение
- •§ 3. Электрический ток и электропроводность вещества
- •§ 4. Электрическое сопротивление и проводимость
- •§ 5. Электродвижущая сила и напряжение источника электрической энергии
- •§ 6. Электрическая цепь и ее элементы
- •§ 7. Закон Ома
- •§ 8. Использование резисторов для регулирования тока в электрической цепи
- •Режимы работы электрической цепи
- •§ 10. Законы Кирхгофа
- •§ 11. Последовательное, параллельное и смешанное соединения резисторов (приемников электрической энергии)
- •§ 12. Мостовая схема соединения резисторов и ее применение
- •§ 13. Работа и мощность электрического тока
- •§ 14. Тепловое действие тока
- •§ 15. Передача электрической энергии по проводам
- •Электромагнетизм и электромагнитная индукция §16. Магнитное поле и его характеристики и свойства
- •§17. Магнитное поле проводника с током и способы его усиления
- •§18. Магнитные свойства различных веществ
- •§19. Магнитная цепь
- •§20. Электромагнитные силы, создаваемые магнитным полем
- •§21. Электромагнитная индукция
- •§22. Вихревые токи
- •§23. Самоиндукция
- •§24. Взаимоиндукция
- •Электрические машины постоянного тока §25. Процесс преобразования энергии в электрических машинах. Режимы их работы
- •§26. Принцип действия
- •§27. Основные части электрических машин и их назначение
- •§28. Обмотки якоря
- •§29. Реакция якоря
- •§30. Коммутация
- •§31. Основы работы генераторов
- •§32. Схемы генераторов и их характеристики
- •§33. Основы работы электродвигателей
- •§34. Схемы электродвигателей и их характеристики
- •§35. Пуск в ход электродвигателей постоянного тока
- •§36. Регулирование частоты вращения якоря электродвигателя
- •§37. Электрическое торможение
- •§38. Мощность и коэффициент полезного действия электрических машин
- •§39. Особенности работы машин постоянного тока при пульсирующем напряжении
- •Химические источники тока §40. Электрический ток в жидких проводниках
- •§41. Понятие о гальванических элементах
- •§42. Кислотные аккумуляторы
- •§43. Щелочные аккумуляторы, принцип действия и устройство
- •§44. Электрические характеристики аккумуляторов
- •§45. Способы соединения аккумуляторов в батареи
- •§46. Получение переменного тока
- •§47. Основные параметры переменного тока
- •§48. Векторные диаграммы
- •§49. Виды сопротивлений в электрической цепи переменного тока
- •§50. Активное сопротивление в цепи переменного тока
- •§51. Индуктивность в цепи переменного тока
- •§52. Конденсаторы, их назначение и устройство
- •§53. Емкость в цепи переменного тока
- •§54. Последовательное соединение активного сопротивления, индуктивности и емкости
- •§55. Параллельное соединение сопротивлений в цепи переменного тока
- •§56. Резонанс напряжений и резонанс токов
- •§57. Мощность переменного тока и коэффициент мощности
- •§58. Передача электрической энергии по проводам при переменном токе
- •§59. Трехфазный переменный ток
- •§60. Схема соединения «звездой»
- •§61. Схема соединения «треугольником»
- •§62. Мощность трехфазной системы
- •§63. Назначение и принцип действия трансформатора
- •§65. Режимы работы трансформатора и его характеристики
- •§66. Мощность, к. П. Д. И коэффициент мощности трансформатора
- •§67. Автотрансформатор и трехфазный трансформатор
- •§68. Трансформаторы для вентильных преобразователей
- •§69. Регулирование напряжения трансформаторов
- •§70. Реакторы
- •§71. Подключение трансформаторов и реакторов к источнику переменного тока
- •§72. Магнитные усилители
- •§73. Стабилизаторы напряжения
- •§74. Вращающееся магнитное поле
- •§75. Принцип действия асинхронного двигателя
- •§76. Асинхронный двигатель с короткозамкнутым ротором
- •§77. Асинхронный двигатель с фазным ротором
- •§78. Режимы работы асинхронных двигателей
- •§79. Характеристики асинхронных двигателей
- •§80. Пуск в ход асинхронных двигателей
- •§81. Регулирование частоты вращения асинхронных двигателей
- •§82. Однофазные и двухфазные асинхронные двигатели
- •§83. Асинхронный расщепитель фаз
- •§84. Асинхронный тахогенератор
- •§85. Сельсины
- •§86. Назначение и принцип действия синхронной машины
- •§87. Устройство синхронной машины
- •§88. Режимы работы синхронного генератора и его характеристики
- •§89. Синхронный двигатель, принцип действия и устройство синхронного двигателя
- •§90. Назначение и классификация электрических аппаратов
- •§91. Контакты электрических аппаратов
- •§92. Электрическая дуга и методы ее гашения
- •§93. Приводы электрических аппаратов
- •§94. Основы работы плавких предохранителей
- •§ 95. Назначение и типы электроизмерительных приборов
- •§ 96. Магнитоэлектрические приборы
- •§ 97. Электромагнитные приборы
- •§ 98. Электродинамические и ферродинамические приборы
- •§ 99. Индукционные приборы
- •§100. Логометры и электронные приборы
- •§101. Измерение тока и напряжения
- •§102. Измерение мощности и электрической энергии
- •§103. Измерение электрического сопротивления
- •§104. Измерение частоты переменного тока
- •§105. Измерение электрическими методами неэлектрических величин
§19. Магнитная цепь
Для того чтобы сосредоточить магнитное поле в определенной части электрической машины, аппарата или прибора и уменьшить мощность, потребляемую катушкой электромагнита, создающего это поле, в конструкции этих устройств широко применяют различные элементы из ферромагнитных материалов. Совокупность таких элементов с разделяющими их воздушными зазорами составляет магнитопровод, или магнитную цепь, электрической машины, аппарата или прибора. Например, магнитная цепь электромагнитного реле (рис. 46, а) состоит из трех участков: сердечника 2, якоря 4 и двух воздушных зазоров 6. По замкнутому контуру, образованному этими участками, проходит магнитный поток 3, создаваемый током катушки 1. При переходе через воздушные зазоры, разделяющие сердечник и якорь, часть магнитного потока замыкается по воздуху, т. е. не проходит через якорь,— возникает поток рассеяния 5.
Магнитное поле в магнитной цепи электрической машины постоянного тока создается током катушек 7 (рис. 46, б), расположенных на полюсах 8. Эти катушки называют обмотками возбуждения. Создаваемый ими магнитный поток проходит через сердечники полюсов, вращающуюся часть машины — якорь 9, воздушные зазоры 11 между полюсами и якорем и замыкается через остов 10.
Магнитодвижущая сила. Способность тока возбуждать магнитное поле оценивается его магнитодвижущей силой (м. д. с). Магнитодвижущая сила F изменяется в амперах. Магнитодвижущая сила проводника с током I равна силе этого тока: F = I.
В общем случае, когда какой-либо замкнутый контур охватывает несколько токов (показан на рис. 47, а штриховой линией), суммарная магнитодвижущая сила равна их алгебраической сумме:
F = ?I (45)
Для случая, показанного на рис. 47, а,
F = I1- I2+ I3
Магнитодвижущая сила катушки (рис. 47, б) представляет произведение тока на число ее витков ?. Это объясняется тем, что
Рис.
46. Магнитные цепи электромагнитного
реле (а) и электрической машины постоянного
тока(б)
Рис.
47. Замкнутый контур магнитной цепи,
сцепленный с тремя электрическими
токами (а) и катушкой с током (б)
замкнутый контур магнитной цепи (показан штриховой линией), сцепленный с катушкой, охватывает ток I не один, a ? раз, т. е.
F = I? (45′)
Закон Ома для магнитной цепи. Для лучшего понимания условий возникновения магнитного поля в магнитных цепях целесообразно провести аналогию между магнитной цепью и цепью электрической. Это можно сделать, например, для простейшей магнитной цепи, на всем протяжении которой напряженность Н магнитного поля постоянна. Для такой цепи произведение напряженности Н на длину l магнитной цепи по всему ее замкнутому контуру равно алгебраической сумме токов, охватываемых этим контуром:
Hl = ?I = F (46)
Формула (46) выражает закон полного тока для рассматриваемой магнитной цепи. Сумма токов ?I, пронизывающих какой-либо замкнутый контур, называется полным током: отсюда и получил свое название этот закон. Если в формулу (46) подставим напряженность Н из формулы (43), заменив индукцию В согласно формуле (41), то получим зависимость магнитного потока Ф от магнитодвижущей силы F и параметров данной магнитной цепи, т. е. от ее магнитного сопротивления RM. Эта зависимость называется законом Ома для магнитной цепи. Он формулируется следующим образом. Магнитный поток, проходящий по магнитной цепи, равен магнитодвижущей силе, деленной на магнитное сопротивление цепи,
Ф = F/R м (47)
Магнитное сопротивление RM = l/(?aS) зависит от длины l магнитной цепи, поперечного сечения S и магнитной проницаемости ?a.
Например, магнитный поток Ф, созданный катушкой с числом витков ?,
Ф = F/RM = I? / (l/(?aS)) (47′)
Из формулы (47) следует, что действие магнитодвижущей cилы аналогично действию электродвижущей силы. Подобно тому как э. д. с. является причиной возникновения тока в электрической цепи, так и м. д. с. является причиной возникновения магнитного потока в магнитной цепи. Чем больше магнитодвижущая сила F, создаваемая катушкой электромагнита, тем больший магнитный поток проходит по его магнитной цепи.
Магнитное сопротивление RM играет в магнитной цепи роль, аналогичную электрическому сопротивлению цепи. Так же как в электрической цепи с увеличением сопротивления уменьшается ток, так и в магнитной цепи с увеличением магнитного сопротивления уменьшается магнитный поток. Следует, однако, отметить, что эта аналогия не распространяется на физические процессы, имеющие место в электрических и магнитных цепях. Кроме того, магнитное сопротивление RM является нелинейным. Оно зависит от магнитной проницаемости ?a, которая изменяется при изменении индукции, т. е. магнитного потока, проходящего через данный участок цепи. Поэтому при расчетах магнитных цепей пользуются кривыми намагничивания, т. е. зависимостями напряженности H от индукции В для соответствующего ферромагнитного материала.
Формулы (47) и (47′) показывают, что возрастание магнитного потока в какой-либо электрической машине или аппарате можно обеспечить: увеличением магнитодвижущей силы F катушки, создающей магнитное поле в данной машине или аппарате, т. е. увеличением проходящего по ней тока I или числа витков ? катушки; уменьшением магнитного сопротивления магнитной цепи данной машины или аппарата путем применения ферромагнитных материалов с большей магнитной проницаемостью ?a; уменьшением воздушных зазоров, разделяющих отдельные участки магнитной цепи, выполненные из ферромагнитных материалов (воздушные зазоры, имеющиеся в магнитной цепи, создают весьма большое магнитное сопротивление); увеличением площади поперечного сечения S отдельных участков магнитной цепи или же уменьшением общей длины магнитной цепи и ее отдельных участков. Все эти меры широко используют при конструировании электрических машин и аппаратов. Магнитопроводы стараются выполнить из высококачественных ферромагнитных материалов, обладающих высокой магнитной проницаемостью (электротехнической стали или специальных сплавов), воздушные зазоры свести до минимальных значений.