
- •4.1 Введение 109
- •6.1 Введение и краткий обзор 170
- •7.1 Введение 206
- •8.1 Введение 232
- •9.1 Обработка ошибок 264
- •10.1 Введение 293
- •11.1 Введение 323
- •13.1 Введение 382
- •Предварительные замечания
- •Структура книги
- •Глава 6 посвящена понятию производных классов, которое позволяет строить
- •Раздел 3.4 главы 2. Для обозначения справочного руководства применяется
- •1.1 Введение
- •1.2 Парадигмы программирования
- •1.2.1 Процедурное программирование
- •1.2.2 Модульное программирование
- •1.2.3 Абстракция данных
- •1.2.4 Пределы абстракции данных
- •1.2.5 Объектно-ориентированное программирование
- •1.3 "Улучшенный с"
- •1.3.1 Программа и стандартный вывод
- •1.3.2 Переменные и арифметические операции
- •1.3.3 Указатели и массивы
- •1.3.4 Условные операторы и циклы
- •1.3.5 Функции
- •1.3.6 Модули
- •1.4 Поддержка абстракции данных
- •1.4.1 Инициализация и удаление
- •1.4.2 Присваивание и инициализация
- •1.4.3 Шаблоны типа
- •1.4.4 Обработка особых ситуаций
- •1.4.5 Преобразования типов
- •1.4.6 Множественные реализации
- •1.5 Поддержка объектно-ориентированного программирования
- •1.5.1 Механизм вызова
- •1.5.2 Проверка типа
- •1.5.3 Множественное наследование
- •1.5.4 Инкапсуляция
- •1.6 Пределы совершенства
- •* Глава 2. Описания и константы
- •2.1 Описания
- •2.1.1 Область видимости
- •2.1.2 Объекты и адреса
- •2.1.3 Время жизни объектов
- •2.2 Имена
- •2.3 Типы
- •2.3.1 Основные типы
- •2.3.2 Неявное преобразование типа
- •2.3.3 Производные типы
- •2.3.5 Указатели
- •2.3.6 Массивы
- •2.3.7 Указатели и массивы
- •2.3.8 Структуры
- •2.3.9 Эквивалентность типов
- •2.3.10 Ссылки
- •2.4 Литералы
- •2.4.1 Целые константы
- •2.4.2 Константы с плавающей точкой
- •2.4.3 Символьные константы
- •2.4.4 Строки
- •2.4.5 Нуль
- •2.5 Поименованные константы
- •2.5.1. Перечисления
- •2.6. Экономия памяти
- •2.6.1 Поля
- •2.6.2. Объединения
- •2.7 Упражнения
- •* Глава 3. Выражения и операторы
- •3.1 Калькулятор
- •3.1.1 Анализатор
- •3.1.2 Функция ввода
- •3.1.3 Таблица имен
- •3.1.4 Обработка ошибок
- •3.1.5 Драйвер
- •3.1.6 Параметры командной строки
- •3.2 Сводка операций
- •3.2.1 Скобки
- •3.2.2 Порядок вычислений
- •3.2.3 Инкремент и декремент
- •3.2.4 Поразрядные логические операции
- •3.2.5 Преобразование типа
- •3.2.6 Свободная память
- •3.3 Сводка операторов
- •3.3.1 Выбирающие операторы
- •3.3.2 Оператор goto
- •3.4 Комментарии и расположение текста
- •3.5 Упражнения
- •* Глава 4
- •4.1 Введение
- •4.2 Связывание
- •4.3 Заголовочные файлы
- •4.3.1 Единственный заголовочный файл
- •4.3.2 Множественные заголовочные файлы
- •4.4 Связывание с программами на других языках
- •4.5 Как создать библиотеку
- •4.6 Функции
- •4.6.1 Описания функций
- •4.6.2 Определения функций
- •4.6.3 Передача параметров
- •4.6.4 Возвращаемое значение
- •4.6.5 Параметр-массив
- •4.6.6 Перегрузка имени функции
- •4.6.7 Стандартные значения параметров
- •4.6.8 Неопределенное число параметров
- •4.6.9 Указатель на функцию
- •4.7 Макросредства
- •4.8 Упражнения
- •* Глава 5. Классы
- •5.1 Введение и краткий обзор
- •5.2 Классы и члены
- •5.2.1 Функции-члены
- •5.2.2 Классы
- •5.2.3 Ссылка на себя
- •5.2.4 Инициализация
- •5.2.5 Удаление
- •5.2.6 Подстановка
- •5.3 Интерфейсы и реализации
- •5.3.1 Альтернативные реализации
- •5.3.2 Законченный пример класса
- •5.4 Еще о классах
- •5.4.1 Друзья
- •5.4.2 Уточнение имени члена
- •5.4.3 Вложенные классы
- •5.4.4 Статические члены
- •5.4.5 Указатели на члены
- •5.4.6 Структуры и объединения
- •5.5 Конструкторы и деструкторы
- •5.5.1 Локальные переменные
- •5.5.2 Статическая память
- •5.5.3 Свободная память
- •5.5.4 Объекты класса как члены
- •5.5.5 Массивы объектов класса
- •5.5.6 Небольшие объекты
- •5.6 Упражнения
- •* Глава 6
- •6.1 Введение и краткий обзор
- •6.2 Производные классы
- •6.2.1 Функции-члены
- •6.2.2 Конструкторы и деструкторы
- •6.2.3 Иерархия классов
- •6.2.4 Поля типа
- •6.2.5 Виртуальные функции
- •6.3 Абстрактные классы
- •6.4 Пример законченной программы
- •6.4.1 Монитор экрана
- •6.4.2 Библиотека фигур
- •6.4.3 Прикладная программа
- •6.5 Множественное наследование
- •6.5.1 Множественное вхождение базового класса
- •6.5.2 Разрешение неоднозначности
- •6.5.3 Виртуальные базовые классы
- •6.6 Контроль доступа
- •6.6.1 Защищенные члены
- •6.6.2 Доступ к базовым классам
- •6.7 Свободная память
- •6.7.1 Виртуальные конструкторы
- •6.7.2 Указание размещения
- •6.8 Упражнения
- •* Глава 7
- •7.1 Введение
- •7.2 Операторные функции
- •7.2.1 Бинарные и унарные операции
- •7.2.2 Предопределенные свойства операций
- •7.2.3 Операторные функции и пользовательские типы
- •7.3 Пользовательские операции преобразования типа
- •7.3.1 Конструкторы
- •7.3.2 Операции преобразования
- •7.3.3 Неоднозначности
- •7.4 Литералы
- •7.5 Большие объекты
- •7.6 Присваивание и инициализация
- •7.7 Индексация
- •7.8 Вызов функции
- •7.9 Косвенное обращение
- •7.10 Инкремент и декремент
- •7.11 Строковый класс
- •7.12 Друзья и члены
- •7.13 Предостережения
- •7.14 Упражнения
- •* Глава 8. Шаблоны типа
- •8.1 Введение
- •8.2 Простой шаблон типа
- •8.3 Шаблоны типа для списка
- •8.3.1 Список с принудительной связью
- •8.3.2 Список без принудительной связи
- •8.3.3 Реализация списка
- •8.3.4 Итерация
- •8.4 Шаблоны типа для функций
- •8.4.1 Простой шаблон типа для глобальной функции
- •8.4.2 Производные классы позволяют ввести новые операции
- •8.4.3 Передача операций как параметров функций
- •8.4.4 Неявная передача операций
- •8.4.5 Введение операций с помощью параметров шаблонного класса
- •8.5 Разрешение перегрузки для шаблонной функции
- •8.6 Параметры шаблона типа
- •8.7 Шаблоны типа и производные классы
- •8.7.1 Задание реализации с помощью параметров шаблона
- •8.8 Ассоциативный массив
- •8.9 Упражнения
- •* Глава 9
- •9.1 Обработка ошибок
- •9.1.1 Особые ситуации и традиционная обработка ошибок
- •9.1.2 Другие точки зрения на особые ситуации
- •9.2 Различение особых ситуаций
- •9.3 Имена особых ситуаций
- •9.3.1 Группирование особых ситуаций
- •9.3.2 Производные особые ситуации
- •9.4 Запросы ресурсов
- •9.4.1 Конструкторы и деструкторы
- •9.4.2 Предостережения
- •9.4.3 Исчерпание ресурса
- •9.4.4 Особые ситуации и конструкторы
- •9.5 Особые ситуации могут не быть ошибками
- •9.6 Задание интерфейса
- •9.6.1 Неожиданные особые ситуации
- •9.7 Неперехваченные особые ситуации
- •9.8 Другие способы обработки ошибок
- •9.9 Упражнения
- •* Глава 10. Потоки
- •10.1 Введение
- •10.2 Вывод
- •10.2.1 Вывод встроенных типов
- •10.2.2 Вывод пользовательских типов
- •10.3 Ввод
- •10.3.1 Ввод встроенных типов
- •10.3.2 Состояния потока
- •10.3.3 Ввод пользовательских типов
- •10.4 Форматирование
- •10.4.1 Класс ios
- •10.4.1.1 Связывание потоков
- •10.4.1.2 Поля вывода
- •10.4.1.3 Состояние формата
- •10.4.1.4 Вывод целых
- •10.4.1.5 Выравнивание полей
- •10.4.1.6 Вывод плавающих чисел.
- •10.4.2 Манипуляторы
- •10.4.2.1 Стандартные манипуляторы ввода-вывода
- •10.4.3 Члены ostream
- •10.4.4 Члены istream
- •10.5 Файлы и потоки
- •10.5.1 Закрытие потоков
- •10.5.2 Строковые потоки
- •10.5.3 Буферизация
- •10.6 Ввод-вывод в с
- •10.7 Упражнения
- •* Проектирование и развитие
- •11.1 Введение
- •11.2 Цели и средства
- •11.3 Процесс развития
- •11.3.1 Цикл развития
- •11.3.2 Цели проектирования
- •11.3.3 Шаги проектирования
- •11.3.3.1 Шаг 1: определение классов
- •11.3.3.2 Шаг 2: определение набора операций
- •11.3.3.3 Шаг 3: указание зависимостей
- •11.3.3.4 Шаг 4: определение интерфейсов
- •11.3.3.5 Перестройка иерархии классов
- •11.3.3.6 Использование моделей
- •11.3.4 Эксперимент и анализ
- •11.3.5 Тестирование
- •11.3.6 Сопровождение
- •11.3.7 Эффективность
- •11.4 Управление проектом
- •11.4.1 Повторное использование
- •11.4.2 Размер
- •11.4.3 Человеческий фактор
- •11.5 Свод правил
- •11.6 Список литературы с комментариями
- •12.1 Проектирование и язык программирования.
- •12.1.1 Игнорирование классов
- •12.1.2 Игнорирование наследования
- •12.1.3 Игнорирование статического контроля типов
- •12.1.4 Гибридный проект
- •12.2 Классы
- •12.2.1 Что представляют классы?
- •12.2.2 Иерархии классов
- •12.2.3 Зависимости в рамках иерархии классов.
- •12.2.4 Отношения принадлежности
- •12.2.5 Принадлежность и наследование
- •12.2.6 Отношения использования
- •12.2.7 Отношения внутри класса
- •12.2.7.1 Инварианты
- •12.2.7.2 Инкапсуляция
- •12.2.8 Программируемые отношения
- •12.3 Компоненты
- •12.4 Интерфейсы и реализации
- •12.5 Свод правил
- •* Проектирование библиотек
- •13.1 Введение
- •13.2 Конкретные типы
- •13.3 Абстрактные типы
- •13.4 Узловые классы
- •13.5 Динамическая информация о типе
- •13.5.1 Информация о типе
- •13.5.2 Класс Type_info
- •13.5.3 Как создать систему динамических запросов о типе
- •13.5.4 Расширенная динамическая информация о типе
- •13.5.5 Правильное и неправильное использование динамической
- •13.6 Обширный интерфейс
- •13.7 Каркас области приложения
- •13.8 Интерфейсные классы
- •13.9 Управляющие классы
- •13.10 Управление памятью
- •13.10.1 Сборщик мусора
- •13.10.2 Контейнеры и удаление
- •13.10.3 Функции размещения и освобождения
- •13.11 Упражнения
9.4.1 Конструкторы и деструкторы
Описанный способ управления ресурсами обычно называют "запрос ресурсов
путем инициализации". Это универсальный прием, рассчитанный на
свойства конструкторов и деструкторов и их взаимодействие с
механизмом особых ситуаций.
Объект не считается построенным, пока не завершил выполнение его
конструктор. Только после этого возможна раскрутка стека,
сопровождающая вызов деструктора объекта. Объект, состоящий из
вложенных объектов, построен в той степени, в какой построены
вложенные объекты.
Хорошо написанный конструктор должен гарантировать, что объект
построен полностью и правильно. Если ему не удается сделать это,
он должен, насколько это возможно, восстановить состояние системы,
которое было до начала построения. Для простых конструкторов было бы
идеально всегда удовлетворять хотя бы одному условию - правильности
или законченности объектов, и никогда не оставлять объект
в "наполовину построенном" состоянии. Этого можно добиться, если
применять при построении членов способ "запроса ресурсов путем
инициализации".
Рассмотрим класс X, конструктору которого требуется два ресурса:
файл x и замок y (т.е. монопольные права доступа к чему-либо).
Эти запросы могут быть отклонены и привести к запуску особой
ситуации. Чтобы не усложнять работу программиста, можно потребовать,
чтобы конструктор класса X никогда не завершался тем, что запрос на
файл удовлетворен, а на замок нет. Для представления двух видов
ресурсов мы будем использовать объекты двух классов FilePtr и
LockPtr (естественно, было бы достаточно одного класса, если x и y
ресурсы одного вида). Запрос ресурса выглядит как инициализация
представляющего ресурс объекта:
class X {
FilePtr aa;
LockPtr bb;
// ...
X(const char* x, const char* y)
: aa(x), // запрос `x'
bb(y) // запрос `y'
{ }
// ...
};
Теперь, как это было для случая локальных объектов, всю служебную
работу, связанную с ресурсами, можно возложить на реализацию.
Пользователь не обязан следить за ходом такой работой. Например,
если после построения aa и до построения bb возникнет особая
ситуация, то будет вызван только деструктор aa, но не bb.
Это означает, что если строго придерживаться этой простой
схемы запроса ресурсов, то все будет в порядке. Еще более важно
то, что создателю конструктора не нужно самому писать обработчики
особых ситуаций.
Для требований выделить блок в свободной памяти характерен самый
произвольный порядок запроса ресурсов. Примеры таких запросов уже
неоднократно встречались в этой книге:
class X {
int* p;
// ...
public:
X(int s) { p = new int[s]; init(); }
~X() { delete[] p; }
// ...
};
Это типичный пример использования свободной памяти, но в совокупности с
особыми ситуациями он может привести к ее исчерпанию памяти.
Действительно, если в init() запущена особая ситуация, то отведенная
память не будет освобождена. Деструктор не будет вызываться, поскольку
построение объекта не было завершено. Есть более надежный вариант
этого примера:
template<class T> class MemPtr {
public:
T* p;
MemPtr(size_t s) { p = new T[s]; }
~MemPtr() { delete[] p; }
operator T*() { return p; }
}
class X {
MemPtr<int> cp;
// ...
public:
X(int s):cp(s) { init(); }
// ...
};
Теперь уничтожение массива, на который указывает p, происходит неявно
в MemPtr. Если init() запустит особую ситуацию, отведенная память
будет освобождена при неявном вызове деструктора для полностью
построенного вложенного объекта cp.
Отметим также, что стандартная стратегия выделения памяти в С++
гарантирует, что если функции operator new() не удалось выделить память
для объекта, то конструктор для него никогда не будет вызываться. Это
означает, что пользователю не надо опасаться, что конструктор или
деструктор может быть вызван для несуществующего объекта.
Теоретически дополнительные расходы, требующиеся для обработки
особых ситуаций, когда на самом деле ни одна из них не возникла, могут
быть сведены к нулю. Однако, вряд ли это верно для ранних
реализациях языка. Поэтому будет разумно в критичных внутренних циклах
программы пока не использовать локальные переменные классов
с деструкторами.