
- •Розділ 1. Механіка
- •§ 1.1. Кінематика механічного руху
- •§ 1.2. Швидкість і прискорення
- •§ 1.3. Кінематика обертового руху матеріальної точки
- •§ 1.4 Закони динаміки. Поняття маси, сили, імпульсу, імпульсу сили. Інерціальні системи відліку
- •§ 1.5. Імпульс системи. Закон збереження імпульсу
- •§ 1.6. Центр мас (інерції) системи. Закон руху центра мас
- •§ 1.7. Межі застосування класичного опису частинок
- •§ 1.8. Основний закон динаміки поступального руху твердого тіла
- •§ 1.9. Динаміка обертового руху твердого тіла відносно осі. Поняття моменту інерції, моменту сили та моменту імпульсу твердого тіла.
- •§ 1.10. Закон збереження моменту імпульсу твердого тіла відносно осі
- •§ 1.11. Поняття енергії і роботи. Робота сили. Потужність.
- •§ 1.12. Кінетична енергія. Теорема про зміну кінетичної енергії.
- •§ 1.13. Потенціальні і непотенціальні сили
- •§ 1.14. Потенціальна енергія та її зв’язок з потенціальними силами
- •§ 1.15. Потенціальна енергія гравітаційної взаємодії
- •§ 1.16. Потенціальна енергія пружної взаємодії
- •§ 1.17. Повна механічна енергія. Закон збереження повної механічної енергії.
- •§ 1.18. Графічне представлення енергії
- •§ 1.19. Перетворення координат Галілея
- •§ 1.20. Інерціальні системи відліку. Механічний принцип відносності
- •§ 1.21. Неінерціальні системи відліку. Сили інерції
- •§ 1.22. Властивості простору і часу у класичній механіці
- •§ 1.23. Постулати спеціальної теорії відносності (ств). Перетворення Лоренца
- •§ 1.24. Властивості простору і часу в релятивістській механіці (наслідки із перетворень Лоренца)
- •§ 1.25. Правила додавання швидкостей в релятивістській механіці
- •§1.26 Релятивістський імпульс
- •§1.27 Основний закон динаміки теорії відносності. Релятивістська енергія
- •§1.28 Зв’язок енергії з імпульсом і маси з енергією спокою
- •§ 1.29. Гідростатика нестисливої рідини. Закон Паскаля. Гідростатичний тиск. Закон Архімеда
- •§ 1.30. Рух ідеальної рідини. Рівняння нерозривності. Рівняння Бернуллі
- •§ 1.31. Гідродинаміка в’язкої рідини. Сила Стокcа
- •Розділ 2. Основи молекулярної фізики і термодинаміки
- •§ 2.1. Статистичний і термодинамічний методи дослідження. Тепловий рух. Основні поняття
- •§ 2.2. Рівняння стану ідеального газу
- •§ 2.3. Основне рівняння молекулярно-кінетичної теорії газів
- •§ 2.4. Середня квадратична швидкість молекул. Молекулярно-кінетичне тлумачення температури
- •§ 2.5. Розподіл Максвела молекул за швидкостями та енергіями
- •§ 2.6. Барометрична формула. Розподіл Больцмана частинок у потенціальному полі
- •§ 2.7. Внутрішня енергія системи. Теплота і робота
- •§ 2.8. Робота розширення (стискання) газу
- •§ 2.9. Перше начало термодинаміки та його застосування до ізопроцесів
- •§ 2.10. Середня кінетична енергія молекул. Внутрішня енергія ідеального газу
- •§ 2.11. Теплоємність газів. Недоліки класичної теорії теплоємностей
- •§ 2.12. Адіабатичний процес. Рівняння Пуасона
- •§ 2.13. Оборотні та необоротні процеси. Цикли
- •§ 2.14. Цикл Карно. Максимальний ккд теплової машини
- •§ 2.15. Друге начало термодинаміки. Нерівність Клаузіуса
- •§ 2.16. Ентропія. Закон зростання ентропії
- •§ 2.17. Статистичний зміст другого начала термодинаміки
- •§ 2.18. Ефективний діаметр молекули. Середнє число зіткнень і середня довжина вільного пробігу
- •§ 2.19. Явища перенесення
- •§ 2.20. Молекулярно-кінетична теорія явищ перенесення
- •§ 2.21. Реальні гази. Рівняння Ван-дер-Ваальса
- •§ 2.22. Ізотерми Ван-дер-Ваальса. Метастабільні стани. Критична точка
- •§ 2.23. Характер теплового руху в рідинах. Поверхневий натяг. Явище змочування. Капілярні явища
- •§ 2.24. Характер теплового руху у твердих тілах. Теплоємність і теплове розширення твердих тіл
- •§ 2.25. Фази і фазові перетворення. Умови рівноваги фаз. Потрійна точка
- •§ 2.26. Рівняння Клапейрона-Клаузіуса
- •§ 2.27. Фазові діаграми
- •§ 3.1.Електричний заряд. Електричне поле. Закон Кулона. Напруженість та індукція електричного поля. Принцип суперпозиції електричних полів
- •§ 3.2. Потік вектора напруженості та індукції електричного поля. Теорема Остроградського-Гауса
- •§ 3.3. Розрахунок електричних полів за допомогою теореми Остроградського-Гауса
- •§ 3.4. Робота сил електричного поля. Теорема про циркуляцію вектора напруженості електричного поля. Потенціал
- •§ 3.5. Розрахунок потенціалу електричного поля деяких заряджених тіл
- •§ 3.6. Провідники в електричному полі. Електроємність відокремленого провідника
- •§ 3.7. Конденсатори. Електроємність конденсатора. З’єднання конденсаторів
- •§ 3.8. Енергія зарядженого тіла і конденсатора. Енергія і густина енергії електричного поля
- •§ 3.9. Діелектрики в електричному полі. Поляризація діелектриків
- •§ 3.10. Електричний струм. Закон Ома для ділянки кола. Закон Ома в диференціальній формі
- •§ 3.11. Електрорушійна сила джерела струму. Закон Ома для неоднорідної ділянки кола і для повного кола
- •§ 3.12. Розгалужені електричні кола. Закони Кірхгофа. З’єднання провідників
- •§ 3.13. Робота і потужність струму. Закон Джоуля-Ленца
- •§ 3.14. Електричний струм в металах. Термоелектронна емісія. Контактні явища
- •§ 3.15. Електричний струм в електролітах
- •§ 3.16. Електричний стум в газах. Плазма
- •§ 3.17. Електричний струм у вакуумі
§ 3.8. Енергія зарядженого тіла і конденсатора. Енергія і густина енергії електричного поля
Розглянемо
відокремлений провідник з електроємністю
і електричним зарядом
.
Потенціал провідника рівний
. (3.116)
Перенесемо
з нескінченності, де потенціал рівний
нулю, елементарний заряд
на поверхню провідника. При цьому
електричним полем буде виконана робота
. (3.117)
Між
однойменними електричними зарядами
і
діють сили відштовхування. Тому при
наближенні елементарного заряду
до заряду
переміщення відбувається в напрямку
протилежному до напрямку дії сили.
Внаслідок цього електричне поле виконує
від’ємну роботу.
Зміна потенціальної енергії рівна виконаній роботі з протилежним знаком, тобто
.
(3.118)
Підставивши (3.116) в (3.118) і проінтегрувавши, дістанемо формулу енергії зарядженого провідника
,
(3.119)
де С – постійна інтегрування. Будемо вважати, що енергія незарядженого провідника рівна нулю
;
.
(3.120)
Підставимо умови (3.120) у вираз (3.119) і визначимо постійну інтегрування С
.
(3.121)
Підставимо (3.121) у формулу (3.119) і одержимо формулу потенціальної енергії зарядженого провідника
.
(3.122)
Використовуючи формулу (3.116) можна отримати інші формули для енергії зарядженого провідника:
;
.
(3.123)
Розглянемо конденсатор з електроємністю с, якому наданий електричний заряд q. Напруга між обкладками конденсатора рівна
. (3.124)
Перенесемо з однієї обкладки на іншу елементарний заряд dq. При цьому електричним полем буде виконана від’ємна робота, оскільки переміщення заряду dq здійснюється проти сили електричного поля
. (3.125)
Зміна потенціальної енергії конденсатора рівна виконаній роботі з протилежним знаком, тому вона рівна
. (3.126)
Проінтегруємо (3.126) і використовуючи формулу (3.124) отримаємо формули енергії зарядженого конденсатора
.
(3.127)
Знайдемо енергію зарядженого плоского конденсатора. Підставимо вираз для електроємності плоского конденсатора (3.103) у формулу (3.127)
. (3.128)
Введемо позначення
, (3.129)
де
– об’єм простору між обкладками плоского
конденсатора. Підставимо (3.129) і вираз
(3.101) напруженості електричного поля
всередині плоского конденсатора у
формулу (3.128) і одержимо
. (3.130)
Враховуючи зв’язок між напруженістю та індукцією електричного поля (3.7) формулу (3.130) можна представити також у вигляді
. (3.131)
Формули (3.130) і (3.131) виражають енергію зарядженого плоского конденсатора через такі характеристики електричного поля як напруженість та індукція, а також через об’єм простору в якому локалізоване електричне поле. Тому можна зробити висновок, що електричне поле володіє енергією.
Густиною енергії електричного поля називається фізична величина рівна енергії електричного поля в одиниці об’єму простору де міститься електричне поле
.
(3.132)
Якщо електричне поле однорідне, то густину енергії електричного поля можна визначити за формулою
.
(3.133)
Підставимо вирази (3.130) і (3.131) у формулу (3.133). отримаємо формули густини енергії електричного поля
.
(3.134)
Із формули (3.132) визначимо диференціал енергії електричного поля
.
(3.135)
Підставимо (3.134) в (3.135)
.
(3.136)
Проінтегруємо вираз (3.136) по деякому об’єму
. (3.137)
Ці формули дозволяють визначити енергію неоднорідного електричного поля.