
- •Розділ 1. Механіка
- •§ 1.1. Кінематика механічного руху
- •§ 1.2. Швидкість і прискорення
- •§ 1.3. Кінематика обертового руху матеріальної точки
- •§ 1.4 Закони динаміки. Поняття маси, сили, імпульсу, імпульсу сили. Інерціальні системи відліку
- •§ 1.5. Імпульс системи. Закон збереження імпульсу
- •§ 1.6. Центр мас (інерції) системи. Закон руху центра мас
- •§ 1.7. Межі застосування класичного опису частинок
- •§ 1.8. Основний закон динаміки поступального руху твердого тіла
- •§ 1.9. Динаміка обертового руху твердого тіла відносно осі. Поняття моменту інерції, моменту сили та моменту імпульсу твердого тіла.
- •§ 1.10. Закон збереження моменту імпульсу твердого тіла відносно осі
- •§ 1.11. Поняття енергії і роботи. Робота сили. Потужність.
- •§ 1.12. Кінетична енергія. Теорема про зміну кінетичної енергії.
- •§ 1.13. Потенціальні і непотенціальні сили
- •§ 1.14. Потенціальна енергія та її зв’язок з потенціальними силами
- •§ 1.15. Потенціальна енергія гравітаційної взаємодії
- •§ 1.16. Потенціальна енергія пружної взаємодії
- •§ 1.17. Повна механічна енергія. Закон збереження повної механічної енергії.
- •§ 1.18. Графічне представлення енергії
- •§ 1.19. Перетворення координат Галілея
- •§ 1.20. Інерціальні системи відліку. Механічний принцип відносності
- •§ 1.21. Неінерціальні системи відліку. Сили інерції
- •§ 1.22. Властивості простору і часу у класичній механіці
- •§ 1.23. Постулати спеціальної теорії відносності (ств). Перетворення Лоренца
- •§ 1.24. Властивості простору і часу в релятивістській механіці (наслідки із перетворень Лоренца)
- •§ 1.25. Правила додавання швидкостей в релятивістській механіці
- •§1.26 Релятивістський імпульс
- •§1.27 Основний закон динаміки теорії відносності. Релятивістська енергія
- •§1.28 Зв’язок енергії з імпульсом і маси з енергією спокою
- •§ 1.29. Гідростатика нестисливої рідини. Закон Паскаля. Гідростатичний тиск. Закон Архімеда
- •§ 1.30. Рух ідеальної рідини. Рівняння нерозривності. Рівняння Бернуллі
- •§ 1.31. Гідродинаміка в’язкої рідини. Сила Стокcа
- •Розділ 2. Основи молекулярної фізики і термодинаміки
- •§ 2.1. Статистичний і термодинамічний методи дослідження. Тепловий рух. Основні поняття
- •§ 2.2. Рівняння стану ідеального газу
- •§ 2.3. Основне рівняння молекулярно-кінетичної теорії газів
- •§ 2.4. Середня квадратична швидкість молекул. Молекулярно-кінетичне тлумачення температури
- •§ 2.5. Розподіл Максвела молекул за швидкостями та енергіями
- •§ 2.6. Барометрична формула. Розподіл Больцмана частинок у потенціальному полі
- •§ 2.7. Внутрішня енергія системи. Теплота і робота
- •§ 2.8. Робота розширення (стискання) газу
- •§ 2.9. Перше начало термодинаміки та його застосування до ізопроцесів
- •§ 2.10. Середня кінетична енергія молекул. Внутрішня енергія ідеального газу
- •§ 2.11. Теплоємність газів. Недоліки класичної теорії теплоємностей
- •§ 2.12. Адіабатичний процес. Рівняння Пуасона
- •§ 2.13. Оборотні та необоротні процеси. Цикли
- •§ 2.14. Цикл Карно. Максимальний ккд теплової машини
- •§ 2.15. Друге начало термодинаміки. Нерівність Клаузіуса
- •§ 2.16. Ентропія. Закон зростання ентропії
- •§ 2.17. Статистичний зміст другого начала термодинаміки
- •§ 2.18. Ефективний діаметр молекули. Середнє число зіткнень і середня довжина вільного пробігу
- •§ 2.19. Явища перенесення
- •§ 2.20. Молекулярно-кінетична теорія явищ перенесення
- •§ 2.21. Реальні гази. Рівняння Ван-дер-Ваальса
- •§ 2.22. Ізотерми Ван-дер-Ваальса. Метастабільні стани. Критична точка
- •§ 2.23. Характер теплового руху в рідинах. Поверхневий натяг. Явище змочування. Капілярні явища
- •§ 2.24. Характер теплового руху у твердих тілах. Теплоємність і теплове розширення твердих тіл
- •§ 2.25. Фази і фазові перетворення. Умови рівноваги фаз. Потрійна точка
- •§ 2.26. Рівняння Клапейрона-Клаузіуса
- •§ 2.27. Фазові діаграми
- •§ 3.1.Електричний заряд. Електричне поле. Закон Кулона. Напруженість та індукція електричного поля. Принцип суперпозиції електричних полів
- •§ 3.2. Потік вектора напруженості та індукції електричного поля. Теорема Остроградського-Гауса
- •§ 3.3. Розрахунок електричних полів за допомогою теореми Остроградського-Гауса
- •§ 3.4. Робота сил електричного поля. Теорема про циркуляцію вектора напруженості електричного поля. Потенціал
- •§ 3.5. Розрахунок потенціалу електричного поля деяких заряджених тіл
- •§ 3.6. Провідники в електричному полі. Електроємність відокремленого провідника
- •§ 3.7. Конденсатори. Електроємність конденсатора. З’єднання конденсаторів
- •§ 3.8. Енергія зарядженого тіла і конденсатора. Енергія і густина енергії електричного поля
- •§ 3.9. Діелектрики в електричному полі. Поляризація діелектриків
- •§ 3.10. Електричний струм. Закон Ома для ділянки кола. Закон Ома в диференціальній формі
- •§ 3.11. Електрорушійна сила джерела струму. Закон Ома для неоднорідної ділянки кола і для повного кола
- •§ 3.12. Розгалужені електричні кола. Закони Кірхгофа. З’єднання провідників
- •§ 3.13. Робота і потужність струму. Закон Джоуля-Ленца
- •§ 3.14. Електричний струм в металах. Термоелектронна емісія. Контактні явища
- •§ 3.15. Електричний струм в електролітах
- •§ 3.16. Електричний стум в газах. Плазма
- •§ 3.17. Електричний струм у вакуумі
§ 1.22. Властивості простору і часу у класичній механіці
Як
вже згадувалось, класична механіка
описує рухи, швидкості яких значно менші
за швидкість світла у вакуумі
.
Для опису рухів, швидкості яких близькі
до швидкості світла, Ейнштейн створив
релятивістську механіку. Релятивістською
називають механіку, яка враховує вимоги
спеціальної теорії відносності.
Основними поняттями теорії простору і часу є довжина відрізка і проміжок часу між двома подіями.
Поставимо питання про те, як змінюються довжина відрізка і проміжок часу при переході від однієї інерціальної системи відліку до іншої. У класичній фізиці відповідь на це питання дають перетворення координат Галілея
;
;
;
(співвідношення
записані для випадку, коли осі
і
співпадають
(рис. 1.19.)).
Із першого рівняння маємо, що
,
тобто довжина відрізка в обох системах
відліку однакова.
Із
четвертого рівняння маємо, що
,
тобто
Рис. 1.19 проміжок часу в обох системах відліку однаковий.
Отже, простір і час незалежні один від одного, простір і час не залежать від швидкості руху систем відліку, простір і час абсолютні.
§ 1.23. Постулати спеціальної теорії відносності (ств). Перетворення Лоренца
-
Швидкість світла і правило додавання швидкостей.
До середини XIX ст. швидкість світла була виміряна вже досить точно. Її значення у вакуумі складає 3·108м/с. Виникло питання про те, до якої інерціальної системи відноситься це значення швидкості. І виникло воно тому, що згідно з правилом додавання швидкостей у класичній фізиці
,
(1.82)
швидкість руху, в тому числі і швидкість руху світла, в різних інерціальних системах відліку різна.
Експериментальні
ж дослідження в цьому напрямі показали,
що швидкість руху світла в різних
інерціальних системах відліку однакова,
що суперечить (1.82). Отже, перетворення
Галілея, з яких слідує правило (1.82), мають
обмежену область застосування; вони
застосовні, коли
.
І так виникла необхідність переглянути ті основні положення, які лежать в основі перетворень Галілея, зокрема положення про абсолютність простору і часу. Цю задачу в 1905 році розв’язав Ейнштейн.
-
Постулати СТВ.
В основі теорії Ейнштейна лежать два положення, які називають постулатами спеціальної теорії відносності:
1). В усіх інерціальних системах відліку всі фізичні явища (механічні, електричні, магнітні, оптичні) при одних і тих же умовах протікають однаково (принцип відносності).
2). Швидкість світла у вакуумі однакова в усіх інерціальних системах відліку і не залежить від руху джерела світла (принцип інваріантності швидкості світла).
-
Перетворення Лоренца.
Виходячи
з цих положень Ейнштейн показав, що
зв’язок між координатами і часом у двох
інерціональних системах відліку (і
)
виражається не перетвореннями Галілея,
а перетвореннями Лоренца.
У
випадку, коли координатні осі
і
систем відліку
і
співпадають, перетворення Лоренца мають
вигляд:
;
;
;
,
де
(
– відносна швидкість систем відліку;
швидкість світла у вакуумі).
Звернемо увагу на першу і останню формули. Вони наочно вказують на те, що не тільки координата залежить від часу, але й час залежить від координати, тобто між простором і часом є взаємозв’язок. Координата і час залежать також від швидкості системи відліку, тобто властивості простору і часу залежать від характеру руху матеріальних об’єктів – простір і час є якостями існування матерії.
Дуже
істотно, що при
формули Лоренца переходять у формули
перетворень Галілея(1.72), у згоді з
Принципом відповідності: попередня
теорія є граничним випадком більш
загальної теорії, і тоді їх результати
співпадають.