
- •История развития бд. Сравнить между собой этапы(файлы и файловые системы, бд на больших эвм, эпоха персональных компьютеров, распределенные базы данных)
- •Файлы и файловые системы
- •I Этап — бд на больших эвм.
- •II этап —эпоха пк.
- •III этап: распределённые базы данных.
- •IV этап. Перспектива развития субд.
- •Архитектура базы данных. Физическая и логическая независимость (трехуровневая модель ansi).
- •Архитектура бд
- •Описать процесс прохождения пользовательского запроса
- •Пользователи баз данных. Основные функции группы администратора бд
- •Перечислить классы субд. Какие возможности обеспечивает использование профессиональных субд. Модели данных в субд
- •Этапы разработки аис.
- •Режимы работы с базой данных.
- •Архитектура клиент-сервер: структура типового интерактивного приложения
- •Модель fs;
- •Модель rda(удалённого доступа к данным)
- •Модель сервера баз данных
- •Модель сервера приложений
- •Классификация моделей данных (описать и прокомментировать все уровни).
- •Иерархическая модель данных. Язык описания данных иерархической модели. Внешние модели.
- •Язык манипулирования данными в иерархических базах данных. Операторы поиска данных. Операторы поиска данных с возможностью модификации. Операторы модификации данных. Операторы поиска данных.
- •Операторы поиска данных с возможностью модификации.
- •Сетевая модель данных. Язык описания данных в сетевой модели.
- •Разделы яод
- •Язык манипулирования данными в сетевой модели.
- •Реляционная алгебра. Теоретико-множественные операции реляционной алгебры. Основные операции (объединение, пересечение, разность, конкатенация кортежей, произведение)
- •Реляционная алгебра. Теоретико-множественные операции реляционной алгебры. Специальные операции (выборка, проекция, соединение, деление).
- •Язык sql. История развития sql. Структура sql. Типы данных.
- •Структура sql
- •Операторы описания данных (ddl).
- •Операторы манипулирования данными (dml)
- •Язык запросов dql. Оператор выбора select.
- •Выборка из одной таблицы
- •Предикаты раздела where
- •Null-значения. Трехзначная логика
- •Агрегатные функции в операторе выбора
- •Вложенные запросы.
- •Проектирование реляционных бд на основе принципов нормализации
- •Этапы жизненного цикла бд. Этапы проектирования бд
- •Системный анализ предметной области (два подхода к выбору состава и структуры предметной области)
- •Инфологическое моделирование. Er - модель (базовые понятия сущность, связь, типы связей: 1:1, 1:n, n:n, обязательная/необязательная).
- •Переход к реляционной модели данных (правила преобразования er-модели в реляционную).
- •Даталогическое проектирование. Перечень результирующих документов, корректная схема бд. Два пути проектирование схемы бд.
- •Последовательность нормальных форм. Их свойства. Первая нормальная форма (1нф), вторая нормальная форма (2нф),
- •Первая нормальная форма
- •Вторая нормальная форма
- •Третья нормальная форма (3нф), нормальная форма Бойса-Кодда (бк нф), Третья нормальная форма
- •Нормальная форма Бойса-Кодда
- •Четвертая нормальная форма (4нф), пятая нормальная форма (5нф) Четвертая нормальная форма
- •Пятая нормальная форма
- •Сурбд Oracle. Конфигурации Oracle. Типы пользователей. Основные обязанности dba.
- •Типы пользователей
- •Архитектура Oracle (физический и логический уровень)
- •Субд Oracle. Табличные пространства. Сегменты, экстенты и блоки данных.
- •Экземпляр Oracle. Sga, pga
- •Процессы. 7 основных фоновых процессов Oracle
- •Объекты бд Oracle. Создание таблиц. Типы данных
- •Субд Oracle. Создание индексов.
- •Субд Oracle. Создание представлений
- •Субд Oracle. Создание последовательностей
- •Техническая часть
- •Субд Oracle. Определенные пользователем типы данных. Создание синонимов
- •Субд Oracle. Создание ограничений
- •Субд Oracle. Создание табличных пространств
- •Основные понятия и конструкции pl/sql. Архитектура pl/sql
- •Поддерживаемый набор символов pl/sql. Арифметические операторы и операторы отношения Набор символов pl/sql
- •Структура программы и переменные pl/sql
- •[Править] Типы данных
- •Операторы управления
- •Pl/sql. Условные операторы if
- •Pl/sql. Циклы
- •Pl/sql. Курсоры
- •Pl/sql. Хранимые процедуры
- •Pl/sql. Функции
- •Pl/sql. Триггеры
-
Вложенные запросы.
С помощью SQL можно вкладывать запросы внутрь друг друга. Обычно внутренний запрос генерирует значение, которое проверяется в предикате внешнего запроса (в предложении WHERE или HAVING), определяющего, верно оно или нет. Совместно с подзапросом можно использовать предикат EXISTS, который возвращает истину, если вывод подзапроса не пуст.
В сочетании с другими возможностями оператора выбора, такими как группировка, подзапрос представляет собой мощное средство для достижения нужного-результата. В части FROM оператора SELECT допустимо применять синонимы к именам таблицы, если при формировании запроса нам требуется более чем один экземпляр некоторого отношения. Синонимы задаются с использованием ключевого слова AS, которое может быть вообще опущено. Поэтому часть FROM может выглядеть следующим образом:
FROM R1 AS A, R1 AS B
или
FROM R1 A, R1 B;
оба выражения эквивалентны и рассматриваются как применения оператора SELECT к двум экземплярам таблицы R1.
Например, покажем, как выглядят на SQL некоторые запросы к БД "Сессия":
-
Список тех, кто сдал все положенные экзамены.
-
SELECT ФИО
-
FROM R1 as a
-
WHERE Оценка > 2
-
GROUP BY ФИО
-
HAVING COUNT(*) = (SELECT COUNT(*)
-
FROM R2,R3
-
WHERE R2.Группа=R3.Группа AND ФИО=a.ФИО)
Здесь во встроенном запросе определяется общее число экзаменов, которые должен сдавать каждый студент, обучающийся в группе, в которой учится данный студент, и это число сравнивается с числом экзаменов, которые сдал данный студент.
-
Проектирование реляционных бд на основе принципов нормализации
При проектировании базы данных решаются две основные проблемы.
-
Каким образом отобразить объекты предметной области в абстрактные объекты модели данных, чтобы это отображение не противоречило семантике предметной области и было, по возможности, лучшим (эффективным, удобным и т. д.)? Часто эту проблему называют проблемой логического проектирования баз данных.
-
Как обеспечить эффективность выполнения запросов к базе данных, т. е. каким образом, имея в виду особенности конкретной СУБД, расположить данные во внешней памяти, создания каких дополнительных структур (например, индексов) потребовать и т. д.? Эту проблему обычно называют проблемой физического проектирования баз данных.
В случае реляционных баз данных трудно предложить какие-либо общие рецепты по части физического проектирования. Здесь слишком многое зависит от используемой СУБД. Поэтому мы ограничимся вопросами логического проектирования реляционных баз данных, которые существенны при использовании любой реляционной СУБД.
Более того, мы не будем касаться очень важного аспекта проектирования – определения ограничений целостности общего вида (за исключением ограничений, задаваемых функциональными и многозначными зависимостями, а также зависимостями проекции/соединения). Дело в том, что при использовании СУБД с развитыми механизмами ограничений целостности (например, SQL-ориентированных систем) трудно предложить какой-либо универсальный подход к определению ограничений целостности.
Эти ограничения могут иметь произвольно сложную форму, и их формулировка пока относится скорее к области искусства, чем инженерного мастерства. Самое большее, что предлагается по этому поводу в литературе, это автоматическая проверка непротиворечивости набора ограничений целостности.