
- •29.2 Исследование общего уравнения прямой на плоскости
- •29.3 Уравнение прямой с угловым коэффициентом
- •§30. Угол между двумя прямыми. Условие параллельности и перпендикулярности прямых
- •30.1 Случай уравнения прямых с угловыми коэффициентами
- •30.2 Случай общего уравнения прямых линий
- •31.4 Уравнение прямой «в отрезках»
- •§32. Расстояние от точки до прямой на плоскости
- •§§3335 Кривые второго порядка
- •§33 Эллипс, как кривая второго порядка. Его полуоси, эксцентриситет, фокусы и директрисы. Окружность в качестве частного случая эллипса.
- •33.1 Эллипс, как кривая второго порядка.
- •33.2 Исследование формы эллипса. Его эксцентриситет, фокусы и директрисы.
- •33.3 Окружность, как частный случай эллипса
- •33.4 Общее уравнение окружности
- •§34 Гипербола и парабола как кривые второго порядка. Их эксцентриситет, фокусы и директрисы. Асимптоты гиперболы.
- •34.1 Гипербола
- •34.2 Парабола
- •34.3 Одно свойство фокусов и директрис
- •§35. Классификация линий второго порядка.
- •35.1 Преобразование координат при повороте осей.
- •35.2 Приведение квадратичной формы второго порядка от двух переменных к каноническому виду.
- •35.3 Упрощение уравнения второго порядка от двух переменных.
- •35.4 Классификация линий второго порядка
- •§36.Плоскость в пространстве. Уравнение плоскости по точке и нормали. Общее уравнение плоскости и его исследование.
- •36.1 Уравнение плоскости по точке и нормали
- •36.2 Общее уравнение плоскости и его исследование
- •§37. Условия параллельности и перпендикулярности двух плоскостей, угол между ними
- •37.1 Взаимное расположение двух плоскостей
- •§39. Расстояние от точки до плоскости
- •40.3 Параметрическое уравнение прямой в пространстве
- •§41. Приведение общего уравнения прямой к каноническому виду
- •Найти одну из точек на прямой
- •2) Найти направляющий вектор прямой .
- •§42. Уравнение прямой в пространстве, проходящей через две заданные точки
- •§43. Условия параллельности, перпендикулярности, компланарности прямых
- •4 3.1 Взаимное расположение двух прямых в пространстве
- •44.2 Угол между прямой и плоскостью. Условие их перпендикулярности
- •44.3 Точка пересечения прямой и плоскости
- •44.4 Доказательство формулы (39.1)
- •44.5 Доказательство того, что точки находятся по одну или по разные стороны от плоскости
- •§45. Расстояние от точки до прямой в пространстве
- •§46. Расстояние между скрещивающимися прямым
- •§47. Поверхности второго порядка
- •47.1Общее и каноническое уравнение поверхностей второго порядка.
- •47.2 Эллипсоид
- •47.3 Гиперболоиды
- •1. Однополостный гиперболоид
- •2.Двуполостной гиперболоид
- •47.4 Параболоиды
- •I.Эллиптический параболоид
- •II Гиперболический параболоид
- •47.5 Цилиндрические поверхности второго порядка
- •I.Эллиптический цилиндр
- •II. Гиперболический цилиндр
- •III. Параболический цилиндр
- •47.6 Конус второго порядка
- •Общее определение конической поверхности
- •47.7 Распадающиеся и вырожденные поверхности второго порядка
- •47.8 Классификация поверхностей второго порядка.
I.Эллиптический цилиндр
Определение 47.8 Эллиптическим цилиндром называется поверхность, координаты всех точек которой в некоторой системе удовлетворяют уравнению
(33.4)
Общий вид эллиптического цилиндра изображён на рис. 47.15. Эллиптический (точнее- круговой) цилиндр вращения получится, если мы будем вращать одну из пары параллельных прямых вокруг другой из них(см. рис. 47.16)
Рис.47.15 Рис.47.16
В сечении эллиптического цилиндра плоскостями могут получиться:
-эллипс (если плоскость не параллельна образующей цилиндра или не проходит через неё; читателю предлагается самостоятельно показать, что в сечении эллиптического цилиндра такой плоскостью должна получиться некоторая ограниченная кривая второго порядка, т.е. эллипс);
-две прямые параллельные линии (когда плоскость параллельна образующей цилиндра или проходит через неё, а также пересекает, но не касается эллиптического цилиндра)
-одна прямая линия (для плоскости, касающейся эллиптического цилиндра);
-пустое множество (в случае, когда плоскость не пересекает эллиптический цилиндр).
II. Гиперболический цилиндр
Определение 47.9 Гиперболическим цилиндром называется поверхность, координаты всех точек которой в некоторой системе координат удовлетворяют уравнению:
(34.1)
Общий вид гиперболического цилиндра изображён на рис.47.17
В сечении гиперболического цилиндра плоскостями могут получиться:
-гипербола (когда секущая плоскость не параллельна образующей гиперболического цилиндра или не пересекает её; читателю предлагаем самостоятельно доказать, что в этом случае в секущей плоскости должна получиться некоторая разрывная кривая второго порядка, т.е. гипербола);
- две прямые параллельные линии (в случае, если плоскость параллельна образующей гиперболического цилиндра (оси аппликат OZ) или проходит через неё, а также пересекает поверхность, но не касается её);
-одна прямая линия (для плоскости, касающейся цилиндрической поверхности);
-пустое множество (в случае, когда плоскость не пересекает гиперболический цилиндр).
III. Параболический цилиндр
Определение 47.10. Параболическим цилиндром называется поверхность, координаты всех точек которой в некоторой системе координат удовлетворяют уравнению:
(34.3)
Общий вид параболического цилиндра изображён на рис. 47.18.
В сечении параболического цилиндра плоскостями могут получаться:
-парабола (когда секущая плоскость не параллельна образующей параболического цилиндра или не пересекает её; читателю предлагаем самостоятельно доказать, что в этом случае в секущей плоскости должна получиться некоторая неограниченная непрерывная кривая второго порядка, т.е. парабола)
- две прямые параллельные линии (если
секущая плоскость параллельна образующей
параболического цилиндра (оси аппликат
OZ) или проходит через неё,
а также пересекает поверхность, но не
касается её); или параллельна плоскости
-одна прямая линия (в случае, когда плоскость касается цилиндрической поверхности);
-пустое множество (для плоскости, не пересекающей параболический цилиндр).
Остальные цилиндрические поверхности являются распадающимися или вырожденными (согласно, например, параграфу 35) и будут рассмотрены в п. 47.7.