
- •Курс общей физики (лекции)
- •Раздел II Электродинамика Москва, 2003 Лекция 1 «Основы электростатики»
- •Введение. Предмет классической электродинамики
- •Из истории электродинамики
- •Электродинамика и научно-технический прогресс
- •Свойства электрических зарядов
- •Закон Кулона
- •Электрическое поле
- •Идеи близко - и дальнодействия
- •Напряжённость электрического поля. Поле точечного заряда. Графическое представление электрических полей
- •Принцип суперпозиции электрических полей
- •Поле диполя
- •Поле бесконечно заряженной нити
- •Лекция 2 «Теорема Гаусса для электрического поля»
- •Поле бесконечной заряженной нити.
- •Поток вектора напряжённости электрического поля
- •Теорема Гаусса для электрического поля
- •Применение теоремы Гаусса для расчёта электрических полей
- •Поле бесконечной заряженной нити
- •Поле бесконечной равномерно заряженной плоскости. Поле плоского конденсатора
- •Поле сферического конденсатора
- •Лекция 3 «Потенциал электростатического поля»
- •Работа сил электростатического поля при перемещении заряда. Потенциал и разность потенциалов.
- •Теорема о циркуляции в вектора напряжённости электростатического поля
- •Связь напряжённости и потенциала электростатического поля
- •Примеры расчёта потенциала электростатических полей
- •Потенциал поля точечного заряда (рис. 3.8.)
- •Разность потенциалов на обкладках сферического конденсатора (рис. 3.9.)
- •Лекция 4 «Электростатика проводников»
- •Электрическое поле заряженного проводника
- •Проводники во внешнем электрическом поле. Явление электростатической индукции. Электрическая защита.
- •Электроёмкость проводника. Конденсаторы. Емкость конденсаторов.
- •Ёмкость плоского конденсатора
- •Ёмкость сферического конденсатора
- •Ёмкость цилиндрического конденсатора
- •Энергия электрического поля. Плотность энергии.
- •Лекция 5 «Электрическое поле в диэлектриках»
- •3.1. Закон Кулона.
- •Типы диэлектриков. Поляризация диэлектриков. Поляризуемость и вектор поляризации.
- •Диэлектрическая проницаемость. Вектор электрического смещения.
- •Законы электрического поля в диэлектриках
- •Закон Кулона
- •Теорема Остроградского-Гаусса
- •Условия на границе двух диэлектриков
- •Лекция 6 «Постоянный электрический ток»
- •Электрический ток. Характеристики электрического тока
- •Законы Ома для участка цепи
- •Закон Ома в интегральной форме
- •Закон Ома в дифференциальной форме
- •Пример расчёта силы тока в проводящей среде
- •Закон Джоуля-Ленца в интегральной и дифференциальной формах
- •Лекция 7 «Постоянный электрический ток»
- •Сторонние силы. Источники тока. Э.Д.С. Источника
- •Закон Ома для неоднородного участка цепи. Закон Ома для замкнутого контура.
- •Правила Кирхгофа
- •Классическая теория электропроводности металлов
- •Лекция 8 «Электромагнетизм. Основы магнитостатики»
- •Электростатика. Краткий обзор.
- •Магнитное взаимодействие электрических токов
- •Магнитное поле. Закон Ампера. Индукция магнитного поля.
- •Принцип суперпозиции магнитных полей. Закон Био-Савара-Лапласа.
- •Магнитное поле прямолинейного тока
- •Магнитное поле на оси кругового тока
- •Магнитное поле движущегося заряда
- •Лекция 9 «Основы магнитостатики»
- •Краткий обзор предыдущей лекции
- •Сила Лоренца
- •Теорема Гаусса и теорема о циркуляции магнитного поля. Система уравнений Максвелла электро- и магнитостатики.
- •Примеры расчёта магнитных полей
- •Поле прямолинейного тока
- •Поле бесконечного соленоида
- •Поле тороида
- •Лекция 10 «Электромагнитная индукция. Энергия магнитного поля»
- •Явление электромагнитной индукции
- •Опыты Фарадея
- •Правило Ленца
- •Электродвижущая сила индукции. Закон Фарадея.
- •Индуктивность. Индуктивность соленоида. Явление самоиндукции.
- •Токи размыкания и замыкания цепи. Энергия и плотность энергии магнитного поля.
- •Лекция 11 «Электрические колебания»
- •Колебательные контуры. Квазистационарные токи.
- •Собственные электрические колебания
- •Собственные незатухающие колебания
- •Собственные затухающие колебания
- •Вынужденные колебания
- •Резистор (r) в цепи переменного тока (рис. 11.7.)
- •Индуктивность в цепи переменного тока (рис. 11.9.)
- •Вынужденные колебания. Резонанс.
- •Проблема косинуса фи
- •Лекция 12 «Теория Максвелла»
- •Две трактовки явления электромагнитной индукции. Вихревое электрическое поле
- •Ток смещения. Обобщение теоремы о циркуляции магнитного поля
- •Полная система уравнений Максвелла и их физический смысл
- •Лекция 13 «Электромагнитные волны»
- •Волновой процесс. Уравнение плоской волны. Волновое уравнение.
- •Плоская электромагнитная волна. Свойства электромагнитных волн.
- •Энергия электромагнитных волн. Плотность потока энергии. Вектор Пойнтинга.
- •Примеры вычисления плотности потока энергии
- •Плотность потока энергии в плоской электромагнитной волне в вакууме
- •Плотность потока энергии электромагнитного поля в цепи постоянного тока. Выделение джоулева тепла в проводнике.
- •Лекция 14 «Магнетизм как релятивистский эффект»
- •Магнитная сила как релятивистское следствие закона Кулона
- •Релятивистское преобразование магнитных и электрических полей
- •Пример 1
- •Пример 2
- •Рекомендуемая литература
- •Содержание
-
Плоская электромагнитная волна. Свойства электромагнитных волн.
Обратимся теперь к тем уравнениям Максвелла, которые связывают электрические и магнитные поля. Это две теоремы о циркуляции [см. (12.4) и (12.6) ]:
,
.
(13.4)
Выберем в пространстве небольшой прямоугольный контур со сторонами dy, dz, параллельными осям y и z (рис. 13.2.). Запишем первое уравнение системы (13.4) для этого контура.
Рис. 13.2.
Вспомним, что левая часть этого уравнения — циркуляция вектора напряженности магнитного поля по выбранному контуру:
,
а правая — это ток проводимости и поток
вектора
через площадку (dydz),
ограниченную контуром 1-2-3-4-1:
.
Приравняв два последних результата, получим
.
Выбрав два других контура с площадями dxdz и dxdy, вновь для них запишем первое уравнение системы (13.4). В итоге это уравнение можно будет представить следующими тремя уравнениями:
(13.5)
Поступив точно также со вторым уравнением системы (13.4), заменим его следующей тройкой дифференциальных уравнений:
(13.6)
Уравнения (13.5) и (13.6) — уравнения Максвелла в дифференциальной форме.
Теперь конкретизируем задачу (правильнее было бы сказать — упростим).
-
Среда — однородный, изотропный диэлектрик. Это означает, что токи проводимости отсутствуют: jx= jy = jz = 0.
-
Будем рассматривать поля
и
,зависящие только от одной координаты x и времени t. Это одномерная задача (рис. 13.3.).
Рис. 13.3.
Для этого конкретного случая уравнения Максвелла (13.5) и (13.6) можно упростить и записать в таком виде
Эти уравнения означают, что изменяющееся
во времени электрическое поле Dy
рождает магнитное поле Hz,
направленное вдоль оси z.
Переменное магнитное поле By
является источником электрического
поля, меняющегося вдоль оси z.
И так далее. В любом случае эти поля —
и
— перпендикулярны друг другу.
Примем, для определенности, что электрическое поле направлено вдоль оси y (E = Ey, Ez = 0), а магнитное — вдоль оси z (H = Hz, Hy = 0). Тогда последняя система четырех уравнений упростится до двух:
(13.7)
Первое из этих уравнений продифференцируем по времени t, а второе — по координате x:
Сравнивая эти два уравнения, приходим к замечательному выводу:
Или еще понятнее:
.
(13.8)
Но теперь-то мы знаем, что это дифференциальное волновое уравнение.
Таким образом, решая совместно уравнения Максвелла, мы пришли к выводу, что в однородной изотропной среде электрические (и магнитные!) поля распространяются в виде электромагнитной волны. Теперь известна и скорость этой волны:
Здесь
— скорость электромагнитной волны в
вакууме ( = 1 и
= 1).
Это значение — с = 3108 м/с, как известно, великолепно подтверждается экспериментом.
Подобное уравнение можно получить и для магнитной составляющей волны:
(13.9)
Решения этих волновых уравнений — (13.8) и (13.9) — хорошо известны:
Теперь найдем связь между мгновенными значениями напряженности электрического (Е) и магнитного (Н) полей. Для этого первое уравнение продифференцируем по t, а второе — по x:
Эти уравнения подставим в первое уравнение системы (13.7):
Проинтегрировав это равенство, получим
Поскольку речь идет о переменных полях, постоянную интегрирования можно положить равной нулю: С = 0. Тогда последнее уравнение можно будет представить так:
или
. (13.10)
Этот результат означает, что напряженности электрического (Е) и магнитного (Н) полей в электромагнитной волне пропорциональны друг другу и меняются, следовательно, синфазно.
Подводя итог, сформулируем еще раз основные свойства электромагнитных волн.
-
Электромагнитные волны поперечны, то есть
-
Скорость распространения волны в однородной среде
Здесь
— скорость электромагнитной волны в
вакууме ( = 1,
= 1), 0 и 0
— диэлектрическая и магнитная
проницаемости среды.
-
Электрическое и магнитное поле в волне меняются в фазе. Мгновенные значения Е и Н пропорциональны друг другу: