
- •Курс общей физики (лекции)
- •Раздел II Электродинамика Москва, 2003 Лекция 1 «Основы электростатики»
- •Введение. Предмет классической электродинамики
- •Из истории электродинамики
- •Электродинамика и научно-технический прогресс
- •Свойства электрических зарядов
- •Закон Кулона
- •Электрическое поле
- •Идеи близко - и дальнодействия
- •Напряжённость электрического поля. Поле точечного заряда. Графическое представление электрических полей
- •Принцип суперпозиции электрических полей
- •Поле диполя
- •Поле бесконечно заряженной нити
- •Лекция 2 «Теорема Гаусса для электрического поля»
- •Поле бесконечной заряженной нити.
- •Поток вектора напряжённости электрического поля
- •Теорема Гаусса для электрического поля
- •Применение теоремы Гаусса для расчёта электрических полей
- •Поле бесконечной заряженной нити
- •Поле бесконечной равномерно заряженной плоскости. Поле плоского конденсатора
- •Поле сферического конденсатора
- •Лекция 3 «Потенциал электростатического поля»
- •Работа сил электростатического поля при перемещении заряда. Потенциал и разность потенциалов.
- •Теорема о циркуляции в вектора напряжённости электростатического поля
- •Связь напряжённости и потенциала электростатического поля
- •Примеры расчёта потенциала электростатических полей
- •Потенциал поля точечного заряда (рис. 3.8.)
- •Разность потенциалов на обкладках сферического конденсатора (рис. 3.9.)
- •Лекция 4 «Электростатика проводников»
- •Электрическое поле заряженного проводника
- •Проводники во внешнем электрическом поле. Явление электростатической индукции. Электрическая защита.
- •Электроёмкость проводника. Конденсаторы. Емкость конденсаторов.
- •Ёмкость плоского конденсатора
- •Ёмкость сферического конденсатора
- •Ёмкость цилиндрического конденсатора
- •Энергия электрического поля. Плотность энергии.
- •Лекция 5 «Электрическое поле в диэлектриках»
- •3.1. Закон Кулона.
- •Типы диэлектриков. Поляризация диэлектриков. Поляризуемость и вектор поляризации.
- •Диэлектрическая проницаемость. Вектор электрического смещения.
- •Законы электрического поля в диэлектриках
- •Закон Кулона
- •Теорема Остроградского-Гаусса
- •Условия на границе двух диэлектриков
- •Лекция 6 «Постоянный электрический ток»
- •Электрический ток. Характеристики электрического тока
- •Законы Ома для участка цепи
- •Закон Ома в интегральной форме
- •Закон Ома в дифференциальной форме
- •Пример расчёта силы тока в проводящей среде
- •Закон Джоуля-Ленца в интегральной и дифференциальной формах
- •Лекция 7 «Постоянный электрический ток»
- •Сторонние силы. Источники тока. Э.Д.С. Источника
- •Закон Ома для неоднородного участка цепи. Закон Ома для замкнутого контура.
- •Правила Кирхгофа
- •Классическая теория электропроводности металлов
- •Лекция 8 «Электромагнетизм. Основы магнитостатики»
- •Электростатика. Краткий обзор.
- •Магнитное взаимодействие электрических токов
- •Магнитное поле. Закон Ампера. Индукция магнитного поля.
- •Принцип суперпозиции магнитных полей. Закон Био-Савара-Лапласа.
- •Магнитное поле прямолинейного тока
- •Магнитное поле на оси кругового тока
- •Магнитное поле движущегося заряда
- •Лекция 9 «Основы магнитостатики»
- •Краткий обзор предыдущей лекции
- •Сила Лоренца
- •Теорема Гаусса и теорема о циркуляции магнитного поля. Система уравнений Максвелла электро- и магнитостатики.
- •Примеры расчёта магнитных полей
- •Поле прямолинейного тока
- •Поле бесконечного соленоида
- •Поле тороида
- •Лекция 10 «Электромагнитная индукция. Энергия магнитного поля»
- •Явление электромагнитной индукции
- •Опыты Фарадея
- •Правило Ленца
- •Электродвижущая сила индукции. Закон Фарадея.
- •Индуктивность. Индуктивность соленоида. Явление самоиндукции.
- •Токи размыкания и замыкания цепи. Энергия и плотность энергии магнитного поля.
- •Лекция 11 «Электрические колебания»
- •Колебательные контуры. Квазистационарные токи.
- •Собственные электрические колебания
- •Собственные незатухающие колебания
- •Собственные затухающие колебания
- •Вынужденные колебания
- •Резистор (r) в цепи переменного тока (рис. 11.7.)
- •Индуктивность в цепи переменного тока (рис. 11.9.)
- •Вынужденные колебания. Резонанс.
- •Проблема косинуса фи
- •Лекция 12 «Теория Максвелла»
- •Две трактовки явления электромагнитной индукции. Вихревое электрическое поле
- •Ток смещения. Обобщение теоремы о циркуляции магнитного поля
- •Полная система уравнений Максвелла и их физический смысл
- •Лекция 13 «Электромагнитные волны»
- •Волновой процесс. Уравнение плоской волны. Волновое уравнение.
- •Плоская электромагнитная волна. Свойства электромагнитных волн.
- •Энергия электромагнитных волн. Плотность потока энергии. Вектор Пойнтинга.
- •Примеры вычисления плотности потока энергии
- •Плотность потока энергии в плоской электромагнитной волне в вакууме
- •Плотность потока энергии электромагнитного поля в цепи постоянного тока. Выделение джоулева тепла в проводнике.
- •Лекция 14 «Магнетизм как релятивистский эффект»
- •Магнитная сила как релятивистское следствие закона Кулона
- •Релятивистское преобразование магнитных и электрических полей
- •Пример 1
- •Пример 2
- •Рекомендуемая литература
- •Содержание
-
Опыты Фарадея
В главном, наиболее убедительном опыте Фарадея (рис. 10.1.) полосовой постоянный магнит (А) вдвигается в катушку (В). Катушка имеет значительное число витков и замкнута на чувствительный гальванометр. При введении в катушку, например, северного магнитного полюса, гальванометр регистрирует в катушке электрический ток. Он получил название наведенного или индукционного тока. Чем энергичнее происходит перемещение магнита в катушке, тем больше отброс стрелки гальванометра. Если магнит резко удалить из катушки, в ней вновь возникнет индукционный ток, но только уже противоположного направления. Ток, возникающий в катушке, сменит направление и в том случае, если вдвигать в нее не северный, а южный полюс магнита.
Этот эксперимент и сотни других подобных опытов позволили Фарадею сделать следующий вывод:
В замкнутом проводящем контуре возникает индукционный ток при любом изменении магнитного потока, пронизывающего этот контур.
Возникновение индукционного тока в замкнутом контуре при изменении пронизывающего его магнитного потока получило название явление электромагнитной индукции.
Рис. 10.1.
Вспомним, что поток вектора магнитной
индукции
через
поверхность
равен скалярному произведению этих
векторов:
.
Значит, изменение потока вектора
магнитной индукции может быть связано
с изменением только этих трех параметров:
,
или
.
На рисунке 10.2 схематично представлена катушка индуктивности в виде одного витка, замкнутого на гальванометр. Рассмотрим теперь различные события, приводящие к возникновению в этом витке индукционного тока.
1.Постоянный магнит можно не только
приближать или удалять от витка (т.е.
менять вектор
),
но и поворачивать: поток будет меняться
за счет угла .
2.Постоянный магнит можно заменить катушкой с током. Такая катушка создает магнитное поле, аналогичное полю постоянного магнита.
Рис. 10.2.
3.Катушку с током можно оставить неподвижной и менять в ней силу тока. При этом будет меняться магнитное поле и поток, пронизывающий наш замкнутый контур. В контуре гальванометр вновь зарегистрирует электрический индукционный ток.
4.Магнитную индукцию поля катушки можно изменить, не меняя тока в ней, но вводя в нее железный сердечник F.
5.Наконец, при неизменном наводящем поле
можно наблюдать появление индукционного
тока в витке в момент “вытягивания”
этого витка “в линию”. При этом изменяется
площадь витка S и поток
магнитной индукции, что и приводит к
возникновению индукционного тока.
Подобные эксперименты позволили Фарадею установить природу индукционного тока: он возникает в замкнутом контуре при любом изменении магнитного потока, пронизывающего этот контур.
-
Правило Ленца
Правило Ленца позволяет предсказать направление индукционного тока, возникающего при изменении пронизывающего его магнитного потока.
Вновь обратимся к фундаментальному опыту Фарадея. Его схема приведена на рис. 10.3. Будем вводить в катушку северный полюс постоянного магнита. При этом в катушке возникнет индукционный ток. Теперь катушка с током создает магнитное поле, аналогичное полю постоянного полосового магнита. Причем на торце А катушки возникнет северный магнитный полюс.
Рис. 10.3.
Если удалять магнит из катушки, направление тока в ней изменится и на ее торце А произойдет смена полюсов: вместо северного появится южный магнитный полюс.
В первом случае магнитное поле катушки будет отталкивать магнит, который мы приближаем к катушке. Во втором — когда мы удаляем магнит — южный полюс магнитного поля катушки будет притягивать северный полюс удаляющегося постоянного магнита.
В обоих случаях магнитное поле индукционного тока стремится затормозить то движение постоянного магнита, которое, в конечном итоге, и приводит к возникновению индукционного тока.
Но нам известны методы получения индукционного тока, не связанные с движением магнитов (см., например, п. 3 на рис. 3.2). Чему же препятствует индукционный ток в этих случаях?
Причиной возникновения индукционного тока всегда является изменение магнитного потока, пронизывающего замкнутый контур. Именно этому изменению и препятствует своим магнитным полем индукционный ток. Эту особенность индукционного тока впервые сформулировал русский ученый Э.Х. Ленц.
Правило Ленца
Индукционный ток всегда имеет такое направление, что его собственное магнитное поле препятствует тому изменению исходного магнитного потока, которое стало причиной возникновения индукционного тока.