Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций Электродинамика.doc
Скачиваний:
81
Добавлен:
03.11.2018
Размер:
6.3 Mб
Скачать
    1. Пример расчёта силы тока в проводящей среде

Пространство между обкладками сферического конденсатора заполнено проводящей средой с удельной электропроводимостью . Какой ток потечёт в таком конденсаторе, если потенциалы электродов 1 и 2 поддерживать постоянными (рис. 6.6.)?

Рис. 6.6.

Задача обладает сферической симметрией. Выделим сферическую эквипотенциальную поверхность радиуса r. Во всех точках этой поверхности не только потенциал одинаков, но и плотность тока по величине одна и та же (6.13):

i = Er,

где Er — напряжённость поля в проводящей среде на поверхности выделенной сферы r. Это поле совпадает с электростатическим полем в вакууме при разности потенциалов на обкладках конденсатора U = 1 – 2. Несложно показать, что для сферического конденсатора:

.

(При выводе этого выражения, можно воспользоваться следующими ранее полученными соотношениями: (2.19), (4.8), (4.5)).

Теперь, воспользовавшись законом Ома в дифференциальной форме, вычислим плотность тока

и полный ток, протекающий через замкнутую поверхность выделенной сферы:

.

Величина этого тока не зависит, конечно, от радиуса r выделенной сферической поверхности: If(r). Зная закон сохранения электрического заряда, этот результат можно было бы предсказать a priori.

Теперь легко вычислить электрическое сопротивление проводящего слоя в конденсаторе:

.

Нелишне ещё раз напомнить, что здесь — удельное сопротивление среды, R — сопротивление проводящего слоя, а вот R1 и R2радиусы сферических обкладок конденсатора.

    1. Закон Джоуля-Ленца в интегральной и дифференциальной формах

Пусть на участке электрической цепи протекает постоянный ток I (рис. 6.7.). Напряжение U на концах этого участка численно равно работе, совершаемой электрическими силами при перемещении единичного положительного заряда по этому участку. Это следует из определения напряжения (см. 3.16).

.

Рис. 6.7.

Отсюда работа A = q  U. За время t по участку будет перенесён заряд q = I  t и при этом будет совершена работа:

A = q  U = U  I  t. (6.14)

Это выражение работы электрического тока справедливо для любых проводников.

Работа, совершаемая в единицу времени — мощность электрического тока:

. (6.15)

В системе СИ мощность измеряется в ваттах:

1 Вт = 1 Дж/1 с = 1 В  1 А.

Работа электрического тока (6.14) может затрачиваться на нагревание проводника, совершение механической работы (электродвигатель) и на химическое действие тока при его течении через электролит (электролиз).

Если химическое действие и механическая работа при течении тока не производятся, то вся работа электрического тока расходуется только на нагревание проводника:

Q = A = U  I  t = I2  R  t. (6.15)

Закон о тепловом эффекте электрического тока (6.15) был экспериментально установлен независимо английским учёным Д. Джоулем и русским академиком Э.Х. Ленцем. Формула (6.15) — математическая запись закона Джоуля-Ленца в интегральной форме, позволяющая вычислить количество теплоты, выделяющейся в проводнике. Для того, чтобы характеризовать тепловой эффект тока в различных точках проводника, выделим в нём элементарный участок трубки тока (рис. 6.8.). Запишем для этого элемента закон Джоуля-Ленца:

.

Здесь мы использовали хорошо известные соотношения:

— сопротивление участка;

i = E — закон Ома в дифференциальной форме;

dV = dl  dS — объём выделенного элемента трубки тока.

Рис. 6.8.

Разделив количество выделившейся теплоты dQ на время dt, получим тепловую мощность электрического тока:

, .

Отнеся эту величину к объёму элемента трубки тока, придём к удельной тепловой мощности:

. (6.16)

Перед нами закон Джоуля-Ленца в дифференциальной форме.

Учитывая, что i = E = , это выражение можно записать ещё и так:

, .

Подводя итог, ещё раз запишем формулы законов постоянного тока, рассмотренные на этой лекции.

Закон Ома для участка цепи:

в интегральной форме: ;

в дифференциальной форме: .

Закон Джоуля-Ленца:

в интегральной форме: Q = I2  R  t;

в дифференциальной форме: Руд =   Е2=.