
- •Курс общей физики (лекции)
- •Раздел II Электродинамика Москва, 2003 Лекция 1 «Основы электростатики»
- •Введение. Предмет классической электродинамики
- •Из истории электродинамики
- •Электродинамика и научно-технический прогресс
- •Свойства электрических зарядов
- •Закон Кулона
- •Электрическое поле
- •Идеи близко - и дальнодействия
- •Напряжённость электрического поля. Поле точечного заряда. Графическое представление электрических полей
- •Принцип суперпозиции электрических полей
- •Поле диполя
- •Поле бесконечно заряженной нити
- •Лекция 2 «Теорема Гаусса для электрического поля»
- •Поле бесконечной заряженной нити.
- •Поток вектора напряжённости электрического поля
- •Теорема Гаусса для электрического поля
- •Применение теоремы Гаусса для расчёта электрических полей
- •Поле бесконечной заряженной нити
- •Поле бесконечной равномерно заряженной плоскости. Поле плоского конденсатора
- •Поле сферического конденсатора
- •Лекция 3 «Потенциал электростатического поля»
- •Работа сил электростатического поля при перемещении заряда. Потенциал и разность потенциалов.
- •Теорема о циркуляции в вектора напряжённости электростатического поля
- •Связь напряжённости и потенциала электростатического поля
- •Примеры расчёта потенциала электростатических полей
- •Потенциал поля точечного заряда (рис. 3.8.)
- •Разность потенциалов на обкладках сферического конденсатора (рис. 3.9.)
- •Лекция 4 «Электростатика проводников»
- •Электрическое поле заряженного проводника
- •Проводники во внешнем электрическом поле. Явление электростатической индукции. Электрическая защита.
- •Электроёмкость проводника. Конденсаторы. Емкость конденсаторов.
- •Ёмкость плоского конденсатора
- •Ёмкость сферического конденсатора
- •Ёмкость цилиндрического конденсатора
- •Энергия электрического поля. Плотность энергии.
- •Лекция 5 «Электрическое поле в диэлектриках»
- •3.1. Закон Кулона.
- •Типы диэлектриков. Поляризация диэлектриков. Поляризуемость и вектор поляризации.
- •Диэлектрическая проницаемость. Вектор электрического смещения.
- •Законы электрического поля в диэлектриках
- •Закон Кулона
- •Теорема Остроградского-Гаусса
- •Условия на границе двух диэлектриков
- •Лекция 6 «Постоянный электрический ток»
- •Электрический ток. Характеристики электрического тока
- •Законы Ома для участка цепи
- •Закон Ома в интегральной форме
- •Закон Ома в дифференциальной форме
- •Пример расчёта силы тока в проводящей среде
- •Закон Джоуля-Ленца в интегральной и дифференциальной формах
- •Лекция 7 «Постоянный электрический ток»
- •Сторонние силы. Источники тока. Э.Д.С. Источника
- •Закон Ома для неоднородного участка цепи. Закон Ома для замкнутого контура.
- •Правила Кирхгофа
- •Классическая теория электропроводности металлов
- •Лекция 8 «Электромагнетизм. Основы магнитостатики»
- •Электростатика. Краткий обзор.
- •Магнитное взаимодействие электрических токов
- •Магнитное поле. Закон Ампера. Индукция магнитного поля.
- •Принцип суперпозиции магнитных полей. Закон Био-Савара-Лапласа.
- •Магнитное поле прямолинейного тока
- •Магнитное поле на оси кругового тока
- •Магнитное поле движущегося заряда
- •Лекция 9 «Основы магнитостатики»
- •Краткий обзор предыдущей лекции
- •Сила Лоренца
- •Теорема Гаусса и теорема о циркуляции магнитного поля. Система уравнений Максвелла электро- и магнитостатики.
- •Примеры расчёта магнитных полей
- •Поле прямолинейного тока
- •Поле бесконечного соленоида
- •Поле тороида
- •Лекция 10 «Электромагнитная индукция. Энергия магнитного поля»
- •Явление электромагнитной индукции
- •Опыты Фарадея
- •Правило Ленца
- •Электродвижущая сила индукции. Закон Фарадея.
- •Индуктивность. Индуктивность соленоида. Явление самоиндукции.
- •Токи размыкания и замыкания цепи. Энергия и плотность энергии магнитного поля.
- •Лекция 11 «Электрические колебания»
- •Колебательные контуры. Квазистационарные токи.
- •Собственные электрические колебания
- •Собственные незатухающие колебания
- •Собственные затухающие колебания
- •Вынужденные колебания
- •Резистор (r) в цепи переменного тока (рис. 11.7.)
- •Индуктивность в цепи переменного тока (рис. 11.9.)
- •Вынужденные колебания. Резонанс.
- •Проблема косинуса фи
- •Лекция 12 «Теория Максвелла»
- •Две трактовки явления электромагнитной индукции. Вихревое электрическое поле
- •Ток смещения. Обобщение теоремы о циркуляции магнитного поля
- •Полная система уравнений Максвелла и их физический смысл
- •Лекция 13 «Электромагнитные волны»
- •Волновой процесс. Уравнение плоской волны. Волновое уравнение.
- •Плоская электромагнитная волна. Свойства электромагнитных волн.
- •Энергия электромагнитных волн. Плотность потока энергии. Вектор Пойнтинга.
- •Примеры вычисления плотности потока энергии
- •Плотность потока энергии в плоской электромагнитной волне в вакууме
- •Плотность потока энергии электромагнитного поля в цепи постоянного тока. Выделение джоулева тепла в проводнике.
- •Лекция 14 «Магнетизм как релятивистский эффект»
- •Магнитная сила как релятивистское следствие закона Кулона
- •Релятивистское преобразование магнитных и электрических полей
- •Пример 1
- •Пример 2
- •Рекомендуемая литература
- •Содержание
-
Пример расчёта силы тока в проводящей среде
Пространство между обкладками сферического
конденсатора заполнено проводящей
средой с удельной электропроводимостью
.
Какой ток потечёт в таком конденсаторе,
если потенциалы электродов 1
и 2 поддерживать
постоянными (рис. 6.6.)?
Рис. 6.6.
Задача обладает сферической симметрией. Выделим сферическую эквипотенциальную поверхность радиуса r. Во всех точках этой поверхности не только потенциал одинаков, но и плотность тока по величине одна и та же (6.13):
i = Er,
где Er — напряжённость поля в проводящей среде на поверхности выделенной сферы r. Это поле совпадает с электростатическим полем в вакууме при разности потенциалов на обкладках конденсатора U = 1 – 2. Несложно показать, что для сферического конденсатора:
.
(При выводе этого выражения, можно
воспользоваться следующими ранее
полученными соотношениями:
(2.19),
(4.8),
(4.5)).
Теперь, воспользовавшись законом Ома в дифференциальной форме, вычислим плотность тока
и полный ток, протекающий через замкнутую поверхность выделенной сферы:
.
Величина этого тока не зависит, конечно, от радиуса r выделенной сферической поверхности: I f(r). Зная закон сохранения электрического заряда, этот результат можно было бы предсказать a priori.
Теперь легко вычислить электрическое сопротивление проводящего слоя в конденсаторе:
.
Нелишне ещё раз напомнить, что здесь
— удельное сопротивление среды, R —
сопротивление проводящего слоя, а
вот R1 и R2
— радиусы сферических обкладок
конденсатора.
-
Закон Джоуля-Ленца в интегральной и дифференциальной формах
Пусть на участке электрической цепи протекает постоянный ток I (рис. 6.7.). Напряжение U на концах этого участка численно равно работе, совершаемой электрическими силами при перемещении единичного положительного заряда по этому участку. Это следует из определения напряжения (см. 3.16).
.
Рис. 6.7.
Отсюда работа A = q U. За время t по участку будет перенесён заряд q = I t и при этом будет совершена работа:
A = q U = U I t. (6.14)
Это выражение работы электрического тока справедливо для любых проводников.
Работа, совершаемая в единицу времени — мощность электрического тока:
. (6.15)
В системе СИ мощность измеряется в ваттах:
1 Вт = 1 Дж/1 с = 1 В 1 А.
Работа электрического тока (6.14) может затрачиваться на нагревание проводника, совершение механической работы (электродвигатель) и на химическое действие тока при его течении через электролит (электролиз).
Если химическое действие и механическая работа при течении тока не производятся, то вся работа электрического тока расходуется только на нагревание проводника:
Q = A = U I t = I2 R t. (6.15)
Закон о тепловом эффекте электрического тока (6.15) был экспериментально установлен независимо английским учёным Д. Джоулем и русским академиком Э.Х. Ленцем. Формула (6.15) — математическая запись закона Джоуля-Ленца в интегральной форме, позволяющая вычислить количество теплоты, выделяющейся в проводнике. Для того, чтобы характеризовать тепловой эффект тока в различных точках проводника, выделим в нём элементарный участок трубки тока (рис. 6.8.). Запишем для этого элемента закон Джоуля-Ленца:
.
Здесь мы использовали хорошо известные соотношения:
— сопротивление участка;
i = E — закон Ома в дифференциальной форме;
dV = dl dS — объём выделенного элемента трубки тока.
Рис. 6.8.
Разделив количество выделившейся теплоты dQ на время dt, получим тепловую мощность электрического тока:
,
.
Отнеся эту величину к объёму элемента трубки тока, придём к удельной тепловой мощности:
. (6.16)
Перед нами закон Джоуля-Ленца в
дифференциальной форме.
Учитывая, что i = E
=
,
это выражение можно записать ещё и так:
,
.
Подводя итог, ещё раз запишем формулы законов постоянного тока, рассмотренные на этой лекции.
Закон Ома для участка цепи:
в интегральной форме: ;
в дифференциальной форме: .
Закон Джоуля-Ленца:
в интегральной форме: Q = I2 R t;
в дифференциальной форме: Руд
=
Е2=
.