
- •Конспект лекций по физике
- •Раздел 5
- •Волновая оптика Электромагнитная природа света. Зависимость между длиной световой волны и частотой электромагнитных колебаний
- •Световой поток, сила света, освещенность
- •Принцип Гюйгенса Законы отражения и преломления света
- •Луч падающий и луч преломленный лежат в одной плоскости с перпендикуляром, восстановленным в точке падения луча к поверхности раздела 2-х сред.
- •Отношение синуса угла падения к синусу угла преломления для двух данных сред есть величина постоянная.
- •3) Падающий и преломленный лучи обратимы. Когерентность и монохроматичность. Интерференция света
- •Дифракция света в щели и в дифракционной решетке
- •Понятие о поляризации света
- •Понятие о голографии
- •Дисперсия света. Разложение белого света призмой. Цвета тел. Виды спектров. Спектральный анализ
- •Электромагнитное излучение в различных диапазонах длин волн. Понятие о парниковом эффекте
- •Парниковый эффект (оранжевый эффект)
- •Оптические приборы
- •Недостатки линз
- •Построение изображения в линзе
- •Формула линзы
- •Квантовая физика. Квантовая оптика Квантовая гипотеза Планка. Квантовая природа света. Распределение энергии в спектре излучения
- •Внешний фотоэффект и его законы. Внутренний фотоэффект. Применение фотоэффекта в технике. Давление света.
- •Применение фотоэффектов в технике
- •Физика атома Радиоактивность. Опыты Резерфорда. Планетарная модель атома. Постулаты Бора
- •Экспериментальные методы регистрации заряженных частиц
- •Биологическое действие радиоактивных лучей
- •Состав ядер. Общие сведения об элементарных частицах. Ядерные силы. Дефект массы. Энергия связи
- •Ядерные силы
- •Дефект массы атомного ядра. Энергия связи.
- •Деление тяжелых атомных ядер
- •Эволюция Вселенной Термоядерный синтез. Эволюция звезд
- •Понятие о космологии. Строение и развитие Вселенной
-
Луч падающий и луч преломленный лежат в одной плоскости с перпендикуляром, восстановленным в точке падения луча к поверхности раздела 2-х сред.
-
Отношение синуса угла падения к синусу угла преломления для двух данных сред есть величина постоянная.
Отсюда с увеличением увеличивается и .
3) Падающий и преломленный лучи обратимы. Когерентность и монохроматичность. Интерференция света
Рассмотрим свойства света, которые могут быть объяснены только волновой природой света. Допустим, на поверхности воды распространяются волны, идущие из 2-х различных точек. Мы наблюдаем их суперпозицию (наложение).
Если волны от разных точек идут с разной частотой, то в каждой точке наблюдения нельзя получить устойчивую картину результирующих колебаний. Устойчивая картина возникает при суперпозиции волн с абсолютно одинаковыми частотами колебаний.
Источники волн, колеблющиеся с одинаковой частотой и в течение всего времени сохраняющие постоянную разность фаз, называются когерентными источниками. Волны, создаваемые такими источниками, являются когерентными.
Явление взаимного усиления и ослабления колебаний в разных точках среды в результате наложения когерентных волн называется интерференцией.
При наложении когерентных волн с противоположными фазами в какой-либо точке среды амплитуда результирующего колебания равна разности амплитуд накладывающихся колебаний. В случае наложения волн с одинаковыми фазами амплитуда результирующего колебания точки будет равна сумме амплитуд накладываемых колебаний.
Возьмем
2 когерентных источника света A
и B
с одинаковыми фазами (рисунок 5).
Для определения амплитуды колебания в точке С находят разность волновых путей до интересующей точки С. ВС-АС=ВD (причем АС=DС) и определяют, сколько длин полуволн укладывается в этой разности (ВD).
Если в отрезке BD уложиться нечетное число полуволн, то волны в точку С приходят в противофазе и в точке С произойдет максимальное ослабление колебаний.
Если в отрезке ВD уложиться четное число полуволн, то волны в точку С приходят в фазе и в точке С произойдет максимальное усиление колебаний.
В оптике когерентными могут быть только лучи, создаваемые одним и тем же источником света. Для создания интерференции света нужно лучи от одного источника света наложить друг на друга с помощью какого-либо оптического устройства: призмы (рисунок 6), зеркала или клинообразной пленки.
Е
D
О S
сли
источник S
сделать в виде узкой светящейся щели,
перпендикулярной плоскости рисунка,
то на экране D
будут видны чередующиеся темные и
светлые полосы (рисунок 7).
Н
Рисунок
6. Создание интерференции с помощью
призмы
Рисунок
7. Картина интерференции на экране
О
дающей один цвет. Такое излучение можно получить с помощью светофильтров – стекол, пропускающих только один цвет. Все остальные цвета эти стекла поглощают.
В точке О экрана будет видна светлая полоса, т.к. в этом месте когерентные лучи будут накладываться с одинаковыми фазами (как считаете, почему?). При удалении от центральной светлой полосы О экрана разность волновых путей возрастает и когда она достигает λ/2, на экране с обоих сторон от центральной полосы О получаются темные полосы. Когда разность волновых путей достигнет λ, то на экране снова появляются светлые полосы и т.д.
Расстояние между светлыми полосами (или темными) прямо пропорционально длине волны λ: чем меньше λ, тем меньше это расстояние.
Цвета монохроматических лучей располагаются в порядке возрастания длин волн следующим образом: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный.
В науке и технике интерференция света широко используется для точных измерений, например определения качества обработки поверхности (шлифовки). С помощью интерференции была измерена длина эталонного метра. В результате метром в настоящее время называют длину, в которой длина волны оранжевых лучей, испускаемых атомами криптона, укладывается 1 650 763,73 раза.