Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
математика 2 пол-е 3класс.doc
Скачиваний:
7
Добавлен:
01.11.2018
Размер:
4.76 Mб
Скачать
  1. Закрепление изученного материала.

Задание 5.

Устно составляются предложения. Если а = 0, то а < 5 — правильно, 0 < 5. Если а = 1, то а < 5 — правильно, 1 < 5.

Если а = 5, то а < 5 — неправильно, В тетради записывается о т в е т: 0, 1, 2, 3, 4.

б)а≤5

Если а = 5, то а ≤ 5 — правильно, 5 = 5;

Если а = 6, то а ≤ 5 — неправильно,

Ответ: 0, 1, 2, 3, 4, 5.

в) 18-2 •а < 21.

Если а = 0, то 18 - 2 •а < 21 — правильно, 18-2•0<21, 18<21.

Если а = 1, то 18 - 2 • а < 21 — правильно, 18 -2•1<21, 16<21.

Если а = 9, то 18-2•а < 21 — правильно, 18-2•9<21, 0<21.

Если а = 10, то 18 - 2•а < 21 — не имеет ре­шения.

Ответ: любое однозначное число.

Задание 6*. 87 - а > 78.

Способ I. Решаем сначала подбором.

Если а = 0, то 87 - а > 78 — правильно (87 > 78).

Если а = 1, то 87 - а > 78 — правильно (86 > 78).

Если а = 9, то 87 - а > 78 — неправильно (78 > 78).

Наибольшее значение а, при котором 87 - а > 78, равно 8.

Способ II. Установим, при каком значении а вы­полняется равенство.

87-а = 78;

а = 87-78; а = 9.

Проверим неравенство для а=10 и а = 8.

Если а = 10, то 87 - а > 78 — неправильно (77>78).

Если а = 8, то 87 - а > 78 — правильно (79 > 78).

Дети видят, что удобнее отвечать на вопрос вторым способом.

Определим, при каком значении b верно неравен­ство 56 > b + 27. Для этого решим уравнение 56 =b + 27 или b + 27 = 56.

b + 27 = 56;

b = 56-27;

b = 29.

Проверим числа 30 и 28.

Если b = 30, то 56 > Ъ + 27 — неправильно (56 ^ 57).

Если b = 28, то 56>b + 27 — правильно (56 > 55).

Ответ: b = 28.

  1. Подведение итогов урока.

  2. Домашнее задание.

Задания 7, 8.

Задание 7.

Было — 86 м

Израсходовали — по 3 м на 18 пальто

Осталось — ? м

Тема урока. Закрепление знаний о нумерации трехзначных чисел.(с.20-21)

Цели урока: 1) закрепить знания о нумерации трехзначных чисел;

2) решать текстовые задачи.

3) воспитывать аккуратность при письме.

Ход урока

  1. Организационный момент.

  2. Проверка домашнего задания.

  3. Устный счёт.

Задания 3, 6*.(устно)

Задание 6*. Начинаем подбор с числа 0.

2 не делится на 6. Ответ: 1.

  1. Сообщение темы и целей урока.

  2. Изучение нового материала.

Задания 2, 5, 4,7(1 выходит за рамки про­граммы).

Проговаривается алгоритм решения уравнения 4•(81-а) = 92.

Какое действие выполняется последним в выра­жении слева? (Умножение.) Называются компонен­ты действия умножения. (Первый множитель, второй множитель, произведение.)

Какой первый множитель? (4.) Какой второй мно­житель? (81 - а.)

Как прочитать выражение в левой части? (Произ­ведение, первый множитель которого — число 4, вто­рой записан разностью 81 - а.)

Где находится неизвестное а? (Во втором множите­ле.) Как найти второй множитель? (Произведение 92 надо разделить на первый множитель 4.) Делаем за­пись: 81 - а = 92 : 4. Выполним деление в правой части уравнения: 81 -а = 23. Получилось простейшее урав­нение с неизвестным вычитаемым, решение которого проводится по уже изученному правилу.

Ученики повторяют несколько раз алгоритм реше­ния уравнения, после чего приступают к выполнению задания 1.

Задание 1. Выполняется под руководством учителя.

В левой части записано произведение: первый мно­житель выражен разностью а - 69, второй — число 8. Неизвестное а находится в первом множителе. Чтобы найти первый множитель, надо произведение разде­лить на второй множитель: а - 69 = 96 : 8. Выполняем действие в правой части: а - 69 = 1 и т. д.