Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vms_answers_for_1-50.doc
Скачиваний:
54
Добавлен:
29.10.2018
Размер:
1.92 Mб
Скачать

28. Основные свойства оценок числовых характеристик случайной величины и формулы для их определения.

29. Определить простейший поток событий, привести примеры использования в моделях ткс.

Поток событий — последовательность событий, которые наступают в случайные моменты времени.

Простейший (стационарный пуассоновский) поток — поток событий, обладающий свойствами стационарности, отсутствия последействия и ординарности.

При рассмотрении процессов, протекающих в системе с дискретными состояниями и непрерывным временем, часто бывает удобно представить себе процесс так, как будто переходы системы из состояния  в состояние происходят под действием каких-то потоков событий. Потоком событий называется последовательность однородных событий, следующих одно за другим в какие-то, вообще говоря, случайные моменты времени. (Поток вызовов на телефонной станции; поток неисправностей (сбоев) ЭВМ; поток грузовых составов, поступающих на станцию; поток посетителей; поток выстрелов, направленных на цель). Будем изображать поток событий последовательностью точек на оси времени ot. Положение каждой точки на оси случайно. Поток событий называется регулярным, если события следуют одно за другим через строго определенные промежутки времени (редко встречается на практике). Рассмотрим специального типа потоки, для этого введем ряд определений.

1. Поток событий называется стационарным,  если вероятность попадания того или иного  числа событий на участок времени длиной  зависит только от длины участка и не зависит от того, где именно на оси ot  расположен этот участок (однородность по времени) – вероятностные характеристики такого потока не должны меняться от времени. В частности, так называемая интенсивность (или плотность) потока событий (среднее число событий в единицу времени) постоянна.

2. Поток событий называется потоком без последствия, если для любых непересекающихся участков времени число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой (или другие, если рассматривается больше двух участков). Отсутствие последствия в потоке означает, что события, образующие поток, появляются в последовательные моменты времени независимо друг от друга.

3. Поток событий называется ординарным, если вероятность попадания на элементарный участок двух или более событий пренебрежительно мала по сравнению с вероятностью попадания одного события (события в потоке приходят поодиночке, а не парами, тройками и т.д.).

Поток событий, обладающий всеми тремя свойствами, называется простейшим (или стационарным пуассоновским). Нестационарный пуассоновский поток обладает только свойствами 2 и 3. Пуассоновский поток событий (как стационарный, так и нестационарный) тесно связан с известным распределением Пуассона. А именно, число событий потока, попадающих на любой участок, распределено по закону Пуассона.

30. Определение множества. Конечные, бесконечные множества. Мощность множества. Множества и подмножества.

Основатель теории множеств немецкий математик Георг Кантор придерживается такого определения: множество – это многое, мыслимое как единое. Это определение сформировалось на основе интуитивных представлений человека о совокупности.

Группа выдающихся французских математиков под псевдонимом Н. Бурбаки дает следующее определение: множество – совокупность (объединение) элементов, обладающих некоторыми свойствами и находящихся в некоторых отношениях между собой или с элементами других множеств.

Вентцель Е.С. дает следующее определение: множество – любая совокупность объектов произвольной природы, каждый из которых называется элементом множества.

Множество обычно обозначают латинскими буквами А, В, С… N… Утверждение, что множество А состоит из различных элементов (и только из этих элементов) условно записываются так: А={а123,…,аn}. Множество однозначно определяется своими элементами. Принадлежность элемента множества (отношение принадлежности) обозначается символом , т.е. а1А, а2А,…, аnА; вA, в не является элементом множества А.

Множество может содержать любое число элементов – конечное или бесконечное. Соответственно имеем конечное множество и бесконечное множество.

Конечное множество – число обслуживаемых абонентов;

Бесконечное множество – множество спектральных составляющих помехи.

Число элементов множества М называется мощностью или кардинальным числом (card) множества и обозначается как или cardM. Мощность конечного множества равна числу элементов этого множества. Мощность бесконечного множества – понятие более сложное.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]