
- •1. Центральная предельная теорема теории вероятностей и ее практическое использование в задачах синтеза ткс.
- •2. Теорема Чебышева и ее практическое использование в задачах анализа ткс.
- •3. Определить понятие системы случайных величин. Дать определение зависимых случайных величии. Привести критерии независимости двух с. В., используемые практически.
- •4. Определить основные числовые характеристики системы случайных величин. Обосновать их использование в задачах анализа ткс.
- •5. Определить основные свойства с.В, имеющей равномерное распределение.
- •6. Обосновать использование такой с.В. Для получения белого шума.
- •7. Определить функцию распределения системы двух с. В и ее основные свойства. Привести геометрическую интерпретацию, указать практическое применение.
- •8. Определить функцию плотности распределения вероятности системы двух с. В. И ее основные свойства. Привести геометрическую интерпретацию, указать практическое применение.
- •9. Определить нормальный закон распределения с.В. И обосновать его широкое применение в моделях ткс.
- •10. Определить основные свойства с.В, имеющей нормальное распределение. Обосновать использование такой с.В. Для получения белого шума.
- •11. Проанализировать график функции плотности вероятности с.В. С нормальным законом распределения. Сформулировать правило «трех сигм» и указать его »фактическое применение в задачах анализа ткс.
- •12. Определить распределение Рэлея и его основные параметры. Привести пример использования этой модели при проектировании систем радиосвязи.
- •13. Определить логарифмически-нормальное распределение с.В и его параметры. Привести пример использования этой модели в сфере телекоммуникаций.
- •16. Проанализировать зависимость закона Пуассона и биномиального закона распределения с. В. Показать использование этой зависимости на практике.
- •18. Привести классификацию случайных явлений. Определить понятие случайного событие и дать определение пространства случайных событий.
- •19. Привести классификацию случайных явлений. Дать определение случайной величины и проанализировать связь с пространством случайных событий.
- •20. Определить вероятность случайного события. Сформулировать основные аксиомы и законы теории вероятностей.
- •21. Обосновать многообразие методов определения вероятности случайного события, дать рекомендации по их применению.
- •22. Определить цель задачи курса. Обосновать необходимость использования вероятностных моделей и методов в практике инженеров телекоммуникаций.
- •23. Дать определение взаимно корреляционной функции двух случайных процессов и привести основные свойства.
- •24. Дать определение корреляционной функции случайного процесса и привести основные свойства.
- •25. Определение и способы описания случайных процессов. Закон распределения случайного процесса.
- •26. Основные характеристики случайного процесса. Классификация случайных процессов.
- •27. Способы обработки опытных данных статистический ряд и группированный статистический ряд.
- •28. Основные свойства оценок числовых характеристик случайной величины и формулы для их определения.
- •29. Определить простейший поток событий, привести примеры использования в моделях ткс.
- •30. Определение множества. Конечные, бесконечные множества. Мощность множества. Множества и подмножества.
- •31. Способы задания множеств. Операции над множествами.
- •32. Основные свойства алгебры множеств.
- •33. Основной принцип комбинаторики. Перестановки, размещения, сочетания.
- •34. Что изучает теория вероятностей? Основные этапы формирования теории вероятностей, как науки.
- •35. Случайное событие. Классификация событий. Элементарное событие. Пространство элементарных событий.
- •36. Случайное событие, как множество элементарных событий. Алгебра событий.
- •37. Вероятность случайного события. Основные аксиомы теории вероятностей.
- •38. Способы задания вероятностей.
- •39. Условная вероятность. Правило умножения вероятностей. Формула полной вероятности. Теорема гипотез (формула Байеса).
- •40. Зависимые и независимые случайные события.
- •41. Вероятность события в испытаниях Бернулли. Формула Пуассона.
- •Если ставить вопрос о появлении события а k-раз в n испытаниях в произвольном порядке, то событие представимо в виде
- •42. Понятие случайной величины. Классификация случайных величин. Примеры случайных величин.
- •43. 3Акон распределения случайной величины. Закон распределения дискретной случайной величины.
- •44. Функция распределения случайной величины, ее свойства. Функция распределения дискретной и непрерывной случайной величины.
- •45. Функция плотности распределения вероятности, ее свойства
- •46. Числовые характеристики случайных величин. Математическое ожидание дискретной и непрерывной случайной величины. Свойства математического ожидания
- •47. Мода и медиана случайной величины. Начальные и центральные моменты случайной величины. Математическое ожидание центрированной случайной величины
- •48. Дисперсия случайной величины. Дисперсия дискретной и непрерывной случайной величины.
- •Постоянный множитель выносится за знак дисперсии в квадрате:.
- •49. Коэффициент вариации, коэффициент асимметрии и эксцесс случайной величины.
- •Свойства коэффициента эксцесса
- •Смысл коэффициента
28. Основные свойства оценок числовых характеристик случайной величины и формулы для их определения.
29. Определить простейший поток событий, привести примеры использования в моделях ткс.
Поток событий — последовательность событий, которые наступают в случайные моменты времени.
Простейший (стационарный пуассоновский) поток — поток событий, обладающий свойствами стационарности, отсутствия последействия и ординарности.
При рассмотрении процессов, протекающих в системе с дискретными состояниями и непрерывным временем, часто бывает удобно представить себе процесс так, как будто переходы системы из состояния в состояние происходят под действием каких-то потоков событий. Потоком событий называется последовательность однородных событий, следующих одно за другим в какие-то, вообще говоря, случайные моменты времени. (Поток вызовов на телефонной станции; поток неисправностей (сбоев) ЭВМ; поток грузовых составов, поступающих на станцию; поток посетителей; поток выстрелов, направленных на цель). Будем изображать поток событий последовательностью точек на оси времени ot. Положение каждой точки на оси случайно. Поток событий называется регулярным, если события следуют одно за другим через строго определенные промежутки времени (редко встречается на практике). Рассмотрим специального типа потоки, для этого введем ряд определений.
1.
Поток событий называется стационарным,
если вероятность попадания того или
иного числа событий на участок
времени длиной зависит
только от длины участка и не зависит от
того, где именно на оси ot
расположен этот участок (однородность
по времени) – вероятностные характеристики
такого потока не должны меняться от
времени. В частности, так называемая
интенсивность (или плотность) потока
событий (среднее число событий в единицу
времени) постоянна.
2. Поток событий называется потоком без последствия, если для любых непересекающихся участков времени число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой (или другие, если рассматривается больше двух участков). Отсутствие последствия в потоке означает, что события, образующие поток, появляются в последовательные моменты времени независимо друг от друга.
3. Поток событий называется ординарным, если вероятность попадания на элементарный участок двух или более событий пренебрежительно мала по сравнению с вероятностью попадания одного события (события в потоке приходят поодиночке, а не парами, тройками и т.д.).
Поток событий, обладающий всеми тремя свойствами, называется простейшим (или стационарным пуассоновским). Нестационарный пуассоновский поток обладает только свойствами 2 и 3. Пуассоновский поток событий (как стационарный, так и нестационарный) тесно связан с известным распределением Пуассона. А именно, число событий потока, попадающих на любой участок, распределено по закону Пуассона.
30. Определение множества. Конечные, бесконечные множества. Мощность множества. Множества и подмножества.
Основатель теории множеств немецкий математик Георг Кантор придерживается такого определения: множество – это многое, мыслимое как единое. Это определение сформировалось на основе интуитивных представлений человека о совокупности.
Группа выдающихся французских математиков под псевдонимом Н. Бурбаки дает следующее определение: множество – совокупность (объединение) элементов, обладающих некоторыми свойствами и находящихся в некоторых отношениях между собой или с элементами других множеств.
Вентцель Е.С. дает следующее определение: множество – любая совокупность объектов произвольной природы, каждый из которых называется элементом множества.
Множество обычно
обозначают латинскими буквами А, В, С…
N… Утверждение, что
множество А состоит из различных
элементов (и только из этих элементов)
условно записываются так: А={а1,а2,а3,…,аn}.
Множество однозначно определяется
своими элементами. Принадлежность
элемента множества (отношение
принадлежности) обозначается символом
,
т.е. а1
А,
а2
А,…,
аn
А;
в
A,
в не является элементом множества А.
Множество может содержать любое число элементов – конечное или бесконечное. Соответственно имеем конечное множество и бесконечное множество.
Конечное множество – число обслуживаемых абонентов;
Бесконечное множество – множество спектральных составляющих помехи.
Число элементов
множества М называется мощностью или
кардинальным числом (card)
множества и обозначается как
или cardM. Мощность
конечного множества равна числу
элементов этого множества. Мощность
бесконечного множества – понятие более
сложное.