- •1. Центральная предельная теорема теории вероятностей и ее практическое использование в задачах синтеза ткс.
- •2. Теорема Чебышева и ее практическое использование в задачах анализа ткс.
- •3. Определить понятие системы случайных величин. Дать определение зависимых случайных величии. Привести критерии независимости двух с. В., используемые практически.
- •4. Определить основные числовые характеристики системы случайных величин. Обосновать их использование в задачах анализа ткс.
- •5. Определить основные свойства с.В, имеющей равномерное распределение.
- •6. Обосновать использование такой с.В. Для получения белого шума.
- •7. Определить функцию распределения системы двух с. В и ее основные свойства. Привести геометрическую интерпретацию, указать практическое применение.
- •8. Определить функцию плотности распределения вероятности системы двух с. В. И ее основные свойства. Привести геометрическую интерпретацию, указать практическое применение.
- •9. Определить нормальный закон распределения с.В. И обосновать его широкое применение в моделях ткс.
- •10. Определить основные свойства с.В, имеющей нормальное распределение. Обосновать использование такой с.В. Для получения белого шума.
- •11. Проанализировать график функции плотности вероятности с.В. С нормальным законом распределения. Сформулировать правило «трех сигм» и указать его »фактическое применение в задачах анализа ткс.
- •12. Определить распределение Рэлея и его основные параметры. Привести пример использования этой модели при проектировании систем радиосвязи.
- •13. Определить логарифмически-нормальное распределение с.В и его параметры. Привести пример использования этой модели в сфере телекоммуникаций.
- •16. Проанализировать зависимость закона Пуассона и биномиального закона распределения с. В. Показать использование этой зависимости на практике.
- •18. Привести классификацию случайных явлений. Определить понятие случайного событие и дать определение пространства случайных событий.
- •19. Привести классификацию случайных явлений. Дать определение случайной величины и проанализировать связь с пространством случайных событий.
- •20. Определить вероятность случайного события. Сформулировать основные аксиомы и законы теории вероятностей.
- •21. Обосновать многообразие методов определения вероятности случайного события, дать рекомендации по их применению.
- •22. Определить цель задачи курса. Обосновать необходимость использования вероятностных моделей и методов в практике инженеров телекоммуникаций.
- •23. Дать определение взаимно корреляционной функции двух случайных процессов и привести основные свойства.
- •24. Дать определение корреляционной функции случайного процесса и привести основные свойства.
- •25. Определение и способы описания случайных процессов. Закон распределения случайного процесса.
- •26. Основные характеристики случайного процесса. Классификация случайных процессов.
- •27. Способы обработки опытных данных статистический ряд и группированный статистический ряд.
- •28. Основные свойства оценок числовых характеристик случайной величины и формулы для их определения.
- •29. Определить простейший поток событий, привести примеры использования в моделях ткс.
- •30. Определение множества. Конечные, бесконечные множества. Мощность множества. Множества и подмножества.
- •31. Способы задания множеств. Операции над множествами.
- •32. Основные свойства алгебры множеств.
- •33. Основной принцип комбинаторики. Перестановки, размещения, сочетания.
- •34. Что изучает теория вероятностей? Основные этапы формирования теории вероятностей, как науки.
- •35. Случайное событие. Классификация событий. Элементарное событие. Пространство элементарных событий.
- •36. Случайное событие, как множество элементарных событий. Алгебра событий.
- •37. Вероятность случайного события. Основные аксиомы теории вероятностей.
- •38. Способы задания вероятностей.
- •39. Условная вероятность. Правило умножения вероятностей. Формула полной вероятности. Теорема гипотез (формула Байеса).
- •40. Зависимые и независимые случайные события.
- •41. Вероятность события в испытаниях Бернулли. Формула Пуассона.
- •Если ставить вопрос о появлении события а k-раз в n испытаниях в произвольном порядке, то событие представимо в виде
- •42. Понятие случайной величины. Классификация случайных величин. Примеры случайных величин.
- •43. 3Акон распределения случайной величины. Закон распределения дискретной случайной величины.
- •44. Функция распределения случайной величины, ее свойства. Функция распределения дискретной и непрерывной случайной величины.
- •45. Функция плотности распределения вероятности, ее свойства
- •46. Числовые характеристики случайных величин. Математическое ожидание дискретной и непрерывной случайной величины. Свойства математического ожидания
- •47. Мода и медиана случайной величины. Начальные и центральные моменты случайной величины. Математическое ожидание центрированной случайной величины
- •48. Дисперсия случайной величины. Дисперсия дискретной и непрерывной случайной величины.
- •Постоянный множитель выносится за знак дисперсии в квадрате:.
- •49. Коэффициент вариации, коэффициент асимметрии и эксцесс случайной величины.
- •Свойства коэффициента эксцесса
- •Смысл коэффициента
5. Определить основные свойства с.В, имеющей равномерное распределение.
Непрерывная случайная величина X имеет равномерное распределение на интервале [x1, x2], если на этом интервале плотность вероятности постоянна, а вне его равна нулю:


Числовые характеристики:
M(x)=(x1+x2)/2
D(x)=((x2- x1)^2)/2
Функция распределения


6. Обосновать использование такой с.В. Для получения белого шума.
Белый шум - случайный процесс с нулевым мат.ожиданием, имеющий автокорреляционную функцию, являющейся дельта-функцией Дираса.
M(t)=0
K(t1,t2)=σ2*ϑ*(t1-t2)
7. Определить функцию распределения системы двух с. В и ее основные свойства. Привести геометрическую интерпретацию, указать практическое применение.
Функцией распределения вероятностей F(x) или интегральным законом распределения случайной величины Х называется вероятность того, что случайная величина Х примет значение меньше х:
![]()
Двумерная функция распределения вероятностей случайных величин X и Y – это вероятность события [X<x,Y<y]
,
где (X<x,Y<y)
геометрическая интерпретация- случайная
точка на плоскости XOY

Из определения функции распределения вероятностей следуют следующие ее свойства:
-
; -
; -

-
не
убываемая функция по одной переменной; -
-
функция распределения слу.вел. X
и Y -
Вероятность попадания (X,Y) в пределы прямоугольника R
![]()
8. Определить функцию плотности распределения вероятности системы двух с. В. И ее основные свойства. Привести геометрическую интерпретацию, указать практическое применение.
Плотностью распределения случайных величин (X,Y) определяется соотношением:
,
если предел существует.
Свойства плотности распределения:
-
; -
; -

-
,
где fx(x)
и fy(y)
– плотности распределения слу.вел. X
и Y -

Геометрически - некая поверхность

9. Определить нормальный закон распределения с.В. И обосновать его широкое применение в моделях ткс.
Плотность вероятности нормального распределения имеет вид:


![]()
С помощью интеграла Пуассона:
![]()
M(x)=mx;D(x)=σx2
-
Свойства:
-
Кривая обладает симетрией относительно одинаты в точке mx
-
В точке mx кривая имеет максимум

-
При |x|->∞ ветвь кривой асимитьтически приближается к оси OX
-
Изминение mx приводит к смещению вдоль оси OX
Для вычисления вероятности попадания используется интеграл Лапласа
![]()
Разброс нормального распределения вокруг своего среднего значения не может превышать 3σx
10. Определить основные свойства с.В, имеющей нормальное распределение. Обосновать использование такой с.В. Для получения белого шума.
См. ответ к вопросу №9
11. Проанализировать график функции плотности вероятности с.В. С нормальным законом распределения. Сформулировать правило «трех сигм» и указать его »фактическое применение в задачах анализа ткс.
Правило 3-х сигм: Вероятность того,что случайная величина x отклонится от своего математического ожидания на величину, большую чем утроенное среднее квадратическое отклонение, практически равна 0. Если для какой-либо слу.вел. выполняется правило 3-х сигм, то она имеет нормальное распределение.
Для дискретной случайной величины, производные в точках разрыва функции распределения не существуют. Однако плотность распределения такой случайной величины можно представить как совокупность d - функций разной интенсивности в точках разрыва функции распределения, т.е. таких d - функций, площадь каждой из которых (интеграл от d - функции) равняется соответствующему скачкообразному приращению функции распределения вероятностей.
Приведем примерные графики плотности распределения ранее представленных функций распределения:

Стрелочками изображены d - функции в точках разрыва функции распределения
