Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОС:Вопросы/Шпоры.docx
Скачиваний:
19
Добавлен:
29.10.2018
Размер:
167.1 Кб
Скачать

36.Надёжность и производительность файловых систем;

Важный аспект надежной работы файловой системы - контроль ее целостности. В результате файловых операций блоки диска могут считываться в память, модифицироваться и затем записываться на диск. Причем многие файловые операции затрагивают сразу несколько объектов файловой системы. Например, копирование файла предполагает выделение ему блоков диска, формирование индексного узла, изменение содержимого каталога и т. д. В течение короткого периода времени между этими шагами информация в файловой системе оказывается несогласованной. Очевидно, что для правильного функционирования файловой системы значимость отдельных данных неравноценна. Искажение содержимого пользовательских файлов не приводит к серьезным (с точки зрения целостности файловой системы) последствиям, тогда как несоответствия в файлах, содержащих управляющую информацию (директории, индексные узлы, суперблок и т. п.), могут быть катастрофическими. Поэтому должен быть тщательно продуман порядок выполнения операций со структурами данных файловой системы. Другим средством поддержки целостности является заимствованный из систем управления базами данных прием, называемый журнализация (иногда употребляется термин "журналирование"). Последовательность действий с объектами во время файловой операции протоколируется, и если произошел останов системы, то, имея в наличии протокол, можно осуществить откат системы назад в исходное целостное состояние, в котором она пребывала до начала операции. Подобная избыточность может стоить дорого, но она оправданна, так как в случае отказа позволяет реконструировать потерянные данные. Если же нарушение все же произошло, то для устранения проблемы несовместимости можно прибегнуть к утилитам (fsck, chkdsk, scandisk и др.), которые проверяют целостность файловой системы. Они могут запускаться после загрузки или после сбоя и осуществляют многократное сканирование разнообразных структур данных файловой системы в поисках противоречий. Производительность файловой системы. Кэш диска представляет собой буфер в оперативной памяти, содержащий ряд блоков диска. Если имеется запрос на чтение/запись блока диска, то сначала производится проверка на предмет наличия этого блока в кэше. Если блок в кэше имеется, то запрос удовлетворяется из кэша, в противном случае запрошенный блок считывается в кэш с диска. Сокращение количества дисковых операций оказывается возможным вследствие присущего ОС свойства локальности (о свойстве локальности много говорилось в лекциях, посвященных описанию работы системы управления памятью). Кэширование - не единственный способ увеличения производительности системы. Другая важная техника - сокращение количества движений считывающей головки диска за счет разумной стратегии размещения информации. Например, массив индексных узлов в Unix стараются разместить на средних дорожках. Также имеет смысл размещать индексные узлы поблизости от блоков данных, на которые они ссылаются и т. д.

37.Физические принципы организации ввода/вывода;

В простейшем случае процессор, память и многочисленные внешние устройства связаны большим количеством электрических соединений – линий, которые в совокупности принято называть локальной магистралью компьютера. Внутри локальной магистрали линии, служащие для передачи сходных сигналов и предназначенные для выполнения сходных функций, принято группировать в шины. При этом понятие шины включает в себя не только набор проводников, но и набор жестко заданных протоколов, определяющий перечень сообщений, который может быть передан с помощью электрических сигналов по этим проводникам. В современных компьютерах выделяют как минимум три шины:шину данных, состоящую из линий данных и служащую для передачи информации между процессором и памятью, процессором и устройствами ввода-вывода, памятью и внешними устройствами; адресную шину, состоящую из линий адреса и служащую для задания адреса ячейки памяти или указания устройства ввода-вывода, участвующих в обмене информацией; шину управления, состоящую из линий управления локальной магистралью и линий ее состояния, определяющих поведение локальной магистрали. В некоторых архитектурных решениях линии состояния выносятся из этой шины в отдельную шину состояния.Количество линий, входящих в состав шины, принято называть разрядностью (шириной) этой шины. Ширина адресной шины, например, определяет максимальный размер оперативной памяти, которая может быть установлена в вычислительной системе. Ширина шины данных определяет максимальный объем информации, которая за один раз может быть получена или передана по этой шине.Операции обмена информацией осуществляются при одновременном участии всех шин. Рассмотрим, к примеру, действия, которые должны быть выполнены для передачи информации из процессора в память. В простейшем случае необходимо выполнить три действия.1.На адресной шине процессор должен выставить сигналы, соответствующие адресу ячейки памяти, в которую будет осуществляться передача информации. 2.На шину данных процессор должен выставить сигналы, соответствующие информации, которая должна быть записана в память. 3.После выполнения действий 1 и 2 на шину управления выставляются сигналы, соответствующие операции записи и работе с памятью, что приведет к занесению необходимой информации по нужному адресу. Внешние устройства разнесены пространственно и могут подключаться к локальной магистрали в одной точке или множестве точек, получивших название портов ввода-вывода.