
- •Вопрос1,3,5,7
- •Метод массовых наблюдений;
- •Метод группировок;
- •Вопрос 9
- •Вопрос 11
- •Вопрос 15
- •Вопрос 13
- •Вопрос 17
- •Вопрос 19
- •Вопрос 21
- •Вопрос 223
- •Вопрос 25
- •Вопрос 27
- •Вопрос 29
- •Вопрос 31
- •Вопрос 33
- •Тема 9. Ряды динамики и их применение в анализе
- •Вопрос35
- •Вопрос37
- •Вопрос 39,41.43
- •Тема 20. Статистика предпринимательства и малого бизнеса
- •Тема 11. Выборочное наблюдение
- •Вопрос 45
- •Вопрос 47
- •Вопрос 49
Вопрос 45
Виды рядов динамики. Методы расчета среднего уровня в рядах динамики
Ряды динамики — это ряды статистических показателей, характеризующих развитие явлений природы и общества во времени. Публикуемые Госкомстатом России статистические сборники содержат большое количество рядов динамики в табличной форме. Ряды динамики позволяют выявить закономерности развития изучаемых явлений.
Ряды динамики содержат два вида показателей. Показатели времени (годы, кварталы, месяцы и др.) или моменты времени (на начало года, на начало каждого месяца и т.п.). Показатели уровней ряда. Показатели уровней рядов динамики могут быть выражены абсолютными величинами (производство продукта в тоннах или рублях), относительными величинами (удельный вес городского населения в %) и средними величинами (средняя заработная плата работников отрасли по годам и т. п.). В табличной форме ряд динамики содержит два столбца или две строки.
Правильное построение рядов динамики предполагает выполнение ряда требований:
все показатели ряда динамики должны быть научно обоснованными, достоверными;
показатели ряда динамики должны быть сопоставимы по времени, т.е. должны быть исчислены за одинаковые периоды времени или на одинаковые даты;
показатели ряда динамики должны быть сопоставимы по территории;
показатели ряда динамики должны быть сопоставимы по содержанию, т.е. исчислены по единой методологии, одинаковым способом;
показатели ряда динамики должны быть сопоставимы по кругу учитываемых хозяйств. Все показатели ряда динамики должны быть приведены в одних и тех же единицах измерения.
Статистические показатели могут характеризовать либо результаты изучаемого процесса за период времени, либо состояние изучаемого явления на определенный момент времени, т.е. показатели могут быть интервальными ( периодическими ) и моментными. Соответственно первоначально ряды динамики могут быть либо интервальными, либо моментными. Моментные ряды динамики в свою очередь могут быть с равными и неравными промежутками времени.
Первоначальные ряды динамики могут быть преобразованы в ряд средних величин и ряд относительных величин (цепной и базисный). Такие ряды динамики называют производными рядами динамики.
Методика расчета среднего уровня в рядах динамики различна, обусловлена видом ряда динамики. На примерах рассмотрим виды рядов динамики и формулы для расчета среднего уровня.
Интервальные ряды динамики
Уровни интервального ряда характеризуют результат изучаемого процесса за период времени: производство или реализация продукции ( за год, квартал, месяц и др. периоды), число принятых на работу, число родившихся и.т.п. Уровни интервального ряда можно суммировать. При этом получаем такой же показатель за более длительные интервалы времени.
Средний уровень в интервальных рядах динамики () исчисляется по формуле средней арифметической простой:
y — уровни ряда (y1, y2 ,...,yn),
n — число периодов (число уровней ряда).
Рассмотрим методику расчета среднего уровня интервального ряда динамики на примере данных о продаже сахара в России.
Годы
Продано сахара, тыс. тонн
1994
2905
1995
2585
1996
2647
- это среднегодовой объем реализации сахара населению России за 1994-1996 гг. Всего за три года было продано 8137 тыс.тонн сахара.
Моментные ряды динамики
Уровни моментных рядов динамики характеризуют состояние изучаемого явления на определенные моменты времени. Каждый последующий уровень включает в себя полностью или частично предыдущий показатель. Так, например, число работников на 1 апреля 1999 г. полностью или частично включает число работников на 1 марта.
Если сложить эти показатели, то получим повторный счет тех работников, которые работали в течение всего месяца. Полученная сумма экономического содержания не имеет, это расчетный показатель.
В моментных рядах динамики с равными интервалами времени средний уровень ряда исчисляется по формуле средней хронологической:
y -уровни моментного ряда;
n -число моментов (уровней ряда);
n — 1 — число периодов времени (лет, кварталов, месяцев).
Рассмотрим методику такого расчета по следующим данным о списочной численности работников предприятия за 1 квартал.
Число работников
на 1 января
150
на 1 февраля
145
на 1 марта
162
на 1 апреля
166
Необходимо вычислить средний уровень ряда динамики, в данном примере — среднюю списочную численность работников предприятия:
Расчет выполнен по формуле средней хронологической. Средняя списочная численность работников предприятия за 1 квартал составила 155 человек. В знаменателе — 3 месяца в квартале, а в числителе (465) — это расчетное число, экономического содержания не имеет. В подавляющем числе экономических расчетов месяцы, независимо от числа календарных дней, считаются равными.
В моментных рядах динамики с неравными интервалами времени средний уровень ряда исчисляется по формуле средней арифметической взвешенной. В качестве весов средней принимается продолжительность времени ( t- дни, месяцы ). Выполним расчет по этой формуле.
Списочная численность работников предприятия за октябрь такова: на 1 октября — 200 человек, 7 октября принято 15 человек, 12 октября уволен 1 человек, 21 октября принято 10 человек и до конца месяца приема и увольнения работников не было. Эту информацию можно представить в следующем виде:
Число работников
Число дней (период времени)
200
6 (с 1 по 6 включительно)
215
5 (с 7 по 11 включительно)
214
9 (с 12 по 20 включительно)
224
11 (с 21 по 31 включительно)
При определении среднего уровня ряда надо учесть продолжительность периодов между датами, т. е. применять формулу средней арифметической взвешенной:
В данной формуле числитель () имеет экономическое содержание. В приведенном примере числитель (6665 человеко-дней) — это календарный фонд времени работников предприятия за октябрь. В знаменателе (31 день) — календарное число дней в месяце.
В тех случаях, когда имеем моментный ряд динамики с неравными интервалами времени, а конкретные даты изменения показателя неизвестны исследователю, то сначала надо вычислить среднюю величину () для каждого интервала времени по формуле средней арифметической простой, а затем вычислить средний уровень для всего ряда динамики, взвесив исчисленные средние величины продолжительностью соответствующего интервала времени . Формулы имеют следующий вид:
Рассмотренные выше ряды динамики состоят из абсолютных показателей, получаемых в результате статистических наблюдений. Построенные первоначально ряды динамики абсолютных показателей могут быть преобразованы в ряды производные: ряды средних величин и ряды относительных величин. Ряды относительных величин могут быть цепные (в % к предыдущему периоду) и базисные (в % к начальному периоду, принятому за базу сравнения — 100%). Расчет среднего уровня в производных рядах динамики выполняется по другим формулам.
Ряд средних величин
Сначала преобразуем приведенный выше моментный ряд динамики с равными интервалами времени в ряд средних величин. Для этого вычислим среднюю списочную численность работников предприятия за каждый месяц, как среднюю из показателей на начало и конец месяца(): за январь (150+145):2=147,5; за февраль (145+162):2 = 153,5; за март (162+166):2 = 164.
Представим это в табличной форме.
Месяцы
Среднесписочная численность работников
Январь
147,5
Февраль
153,5
Март
164,0
Средний уровень в производных рядах средних величин рассчитывается по формуле средней арифметичекой простой:
Заметим, что средняя списочная численность работников предприятия за 1 квартал, вычисленная по формуле средней хронологической на базе данных на 1 число каждого месяца и по средней арифметической — по данным производного ряда — равны между собой, т.е. 155 человек. Сравнение расчетов позволяет понять, почему в формуле средней хронологической начальный и конечный уровни ряда берутся в половинном размере, а все промежуточные уровни берутся в полном размере.
Ряды средних величин, производные от моментных или интервальных рядов динамики, не следует смешивать с рядами динамики, в которых уровни выражены средней величиной. Например, средняя урожайность пшеницы по годам, средняя заработная плата и т.д.
Ряды относительных величин
В экономической практике очень широко используют ряды относительных величин. Практически любой первоначальный ряд динамики можно преобразовать в ряд относительных величин. По сути преобразование означает замену абсолютных показателей ряда относительными величинами динамики.
Средний уровень ряда в относительных рядах динамики называется среднегодовым темпом роста. Методы его расчета и анализа рассмотрены ниже.