Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
еще одни ответы ТКМ.doc
Скачиваний:
6
Добавлен:
28.10.2018
Размер:
4.34 Mб
Скачать

2. Гипсовые вяжущие вещества: сырье, принципы производства, свойства и области применения. Методы повышения водостойкости(б 25/2).

3. Синтетические полимеры и смолы, применяемые для изготовления строительных материалов. Сравнение термопластов и реактопластов по теплостойкости и другим свойствам. Виды полимерных строительных материалов. Синтетические полимеры делят в зависимости от метода получения на полимеризационные и поликонденсационные. Полимеризационные полимеры (полиэтилен, полиизобутилен, полистирол, полиметилметакрилат и т.п.) получают преимущественно методами полимеризации. Полимеризации могут подвергаться только такие мономеры, в молекулах которых содержатся кратные связи (или циклические группировки). За счет этих связей (или за счет раскрытия цикла) у молекул исходного вещества образуются свободные валентности, которыми они соединяются между собой в макромолекулы. Поскольку в процессе полимеризации не отщепляются атомы и атомные группы, химический состав полимера и мономера одинаков. Поликонденсационные полимеры (фенолоальдегидные, мочевино-альдегидные, эпоксидные, полиэфирные, полиамидные и т.п.) получают методами поликонденсации. При поликонденсации макромолекулы образуются в результате химического взаимодействия между функциональными группами, находящимися в молекулах ис­ходных веществ; это взаимодействие сопровождается отщеплением молекул побочных продуктов: воды, хлористого водорода, аммиака и др. В связи с этим химический состав получаемого полимера отличается от состава исходных низкомолекулярных веществ. По внутреннему строению различают линейные и пространственные (с поперечными связями и сетчатые) полимеры. Линейные полимеры состоят из длинных нитевидных макромолекул, связанных между собой слабыми силами межмолекулярного взаимодействия. Однако наличие в структурных единицах составляющих полимер полярных группировок атомов усиливает взаимодействие между цепями. В пространственных (трехмерных) полимерах прочные химические связи между . цепями приводят к образованию единого пространственного каркаса. Пространственные структуры гораздо хуже деформируются, чем структуры из линейных молекул. При образовании сплошной пространственной структуры полимер приобретает свойства твердого упругого тела (типа эбонита). Различие во внутреннем строении линейных полимеров и полимеров с жестким пространственным каркасом отчетливо проявляется при нагревании. Линейные полимеры при нагреве размягчаются и переходят в вязкоупругое (каучукоподобное) состояние, поскольку межмолекулярные силы и водородные связи между их цепями преодолеваются при сравнительно умеренном повышении температуры. Они являются термопластичными. Термопластичными (термопластами) называют полимеры, способные обратимо размягчаться при нагреве и отверждаться при охлаждении, сохраняя основные свойства. В пространственных полимерах с жестким каркасом ковалентные связи между цепями имеют прочность того же порядка, что и прочность связей внутри цепи. Для разрыва таких связей тепловым движением требуется высокая температура, которая может вызвать разрыв связей не только между цепями, но и внутри цепей. Разрыв наименее прочных связей, существующих внутри цепей, является началом деструкции (химического разложения) полимера. Такой процесс необратим. Эти полимеры являются термореактивными. Термореактивными (или реактопластами) называют полимеры, которые, будучи отверждены, не переходят при нагреве в пластичное состояние. Следовательно, термореактивные полимеры при повышении температуры ведут себя подобно древесине: при высокотемпературном нагреве они претерпевают деструкцию и загора­ются.