
- •Что называют электрическим током?
- •Зависимость сопротивления от температуры
- •Вольтамперная характеристика разряда
- •Электрический Ток в Вакууме
- •Электронно-дырочный переход
- •История открытия
- •Электромагнитная теория света
- •Вихревое электрическое поле
- •Классификация
- •Характеристики
- •Свойства электромагнитной волны.
- •Свойства электромагнитных волн
- •Закон Ома для переменного тока
- •3.6. Развитие представлений о природе света
- •Законы теплового излучения.
- •Законы внешнего фотоэффекта
- •Химическое действие света
Электрический Ток в Вакууме
Если два электрода поместить в герметичный сосуд и удалить из сосуда воздух, то электрический ток в вакууме не возникает - нет носителей электрического тока. Американский ученый Т. А. Эдисон (1847-1931) в 1879 г. обнаружил, что в вакуумной стеклянной колбе может возникнуть электрический ток, если один из находящихся в ней электродов нагреть до высокой температуры. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией. Работа, которую нужно совершить для освобождения электрона с поверхности тела, называется работой выхода. Явление термоэлектронной эмиссии объясняется тем, что при повышении температуры тела увеличивается кинетическая энергия некоторой части электронов в веществе. Если кинетическая энергия электрона превысит работу выхода, то он может преодолеть действие сил притяжения со стороны положительных ионов и выйти с поверхности тела в вакууме. На явлении термоэлектронной эмиссии основана работа различных электронных ламп.
Термоэлектро́нная эми́ссия (эффект Ричардсона, эффект Эдисона) — явление испускания электронов нагретыми телами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов,кинетическая энергия теплового движения которых больше работы выхода, растет и явление термоэлектронной эмиссии становится заметным.
Исследование закономерностей термоэлектронной эмиссии можно провести с помощью простейшей двухэлектродной лампы — вакуумного диода, представляющего собой откачанный баллон, содержащий два электрода: катод К и анод А. В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Если диод включить в цепь, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод испускает отрицательные частицы — электроны.
Если поддерживать температуру накаленного катода постоянной и снять зависимость анодного тока от анодного напряжения — вольт-амперную характеристику, то оказывается, что она не является линейной, то есть для вакуумного диодазакон Ома не выполняется. Зависимость термоэлектронного тока от анодного напряжения в области малых положительных значений описывается законом трех вторых (установлен русским физиком С. А. Богуславским (1883— 1923) и американским физиком И. Ленгмюром (1881 — 1957)): I = BU3 / 2, где В — коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.
При увеличении анодного напряжения ток возрастает до некоторого максимального значения, называемого током насыщения. Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряженности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода. Плотность тока насыщения определяется формулой Ричардсона — Дешмана, выведенной теоретически на основе квантовой статистики: j = CT2e − A / kT, где А — работа выхода электронов из катода, Т — термодинамическая температура, С — постоянная, теоретически одинаковая для всех металлов (это не подтверждается экспериментом, что, по-видимому, объясняется поверхностными эффектами). Уменьшение работы выхода приводит к резкому увеличению плотности тока насыщения. Поэтому применяются оксидные катоды (например, никель, покрытый оксидом щелочно-земельного металла), работа выхода которых равна 1 −1,5 эВ.
На явлении термоэлектронной эмиссии основана работа электронных ламп, а также электронно-лучевых трубок и других приборов, имеющих в своём составе электронную пушку. Также, явление термоэлектронной эмиссии используется в приборах, в которых необходимо получить поток электронов в вакууме, например в электронных лампах, рентгеновских трубках, электронных микроскопах и т. д. Электронные лампы широко применяются в электро- и радиотехнике,автоматике и телемеханике для выпрямления переменных токов, усиления электрических сигналов и переменных токов, генерирования электромагнитных колебаний и т. д. В зависимости от назначения в лампах используются дополнительные управляющие электроды.
17.электронно-лучевая трубка
Электронно-лучевая трубка (ЭЛТ) или кинескоп – электронный прибор, предназначенный для превращения электрических сигналов в световые. ЭЛТ являются основной частью телевизора.
Состоят кинескопы из трех основных узлов:
-
электронной пушки – устройство для формирования электронного луча;
-
экрана со специальным покрытием (люминофором). Экран предназначен для формирования светового сигнала в момент попадания на него электронного луча. Люминофор начинает светиться, если на него воздействует электронный луч;
-
отклоняющей системы, которая предназначена для изменения направления электронного луча, для того чтобы на экране формировалось нужное изображение.
s
Принцип работы электронно-лучевой трубки
Электронный луч образуется в электронной пушке, где помещен катод, который и испускает поток электронов. Для того, чтобы образовался поток, катод нагревают специальной нитью накала. В пушке располагается так называемый «управляющий электрод», который способен увеличивать или уменьшать напряжение.
Если увеличить напряжение, то и интенсивность электронного луча тоже увеличится, а следовательно, изображение на экране будет ярче. Уменьшение напряжения на управляющем электроде приводит к формированию более тусклого изображения. На выходе из электронной пушки располагается анод, который представляет собой трубу в виде конуса. Здесь (в аноде) электронный луч ускоряется.
Выйдя из анода, электронный луч попадает в отклоняющую систему, которая представляет собой либо систему магнитов, либо электростатическая система. С помощью этой системы направление луча изменяется. Конечным пунктом пути электронного луча является экран кинескопа. Слой люминофора способен самостоятельно испускать электроны (светиться), если на него воздействует электронный луч. Таким образом происходит превращение электрический импульсов в световые импульсы.
18.электрический ток в полупроводниках
Электрический Ток в Полупроводниках
Полупроводниками назвали класс веществ, у которых с повышением температуры увеличивается проводимость, уменьшается электрическое сопротивление. Этим полупроводники принципиально отличаются от металлов.
Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены кова-лентной связью. При любых температурах в полупроводниках имеются свободные электроны. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов кристаллической решетки приводит к превращению этого атома в положительный ион. Этот ион может нейтрализоваться, захватив электрон у одного из соседних атомов. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс воспринимается как перемещение положительного электрического заряда, называемого дыркой.
При помещении кристалла в электрическое поле возникает упорядоченное движение дырок - дырочный ток проводимости.
В идеальном полупроводниковом кристалле электрический ток создается движением равного количества отрицательно заряженных электронов и положительно заряженных дырок. Проводимость в идеальных полупроводниках называется собственной проводимостью.
Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов - донорные и акцепторные.
Примеси, отдающие электроны и создающие электронную проводимость, называются донорными (примеси, имеющие валентность больше, чем у основного полупроводника). Полупроводники, в которых концентрация электронов превышает концентрацию дырок, называют полупроводниками n-типа.
Примеси, захватывающие электроны и создающие тем самым подвижные дырки, не увеличивая при этом число электронов проводимости, называют акцепторными (примеси имеющие валентность меньше, чем у основного полупроводника).
При низких температурах основными носителями тока в полупроводниковом кристалле с акцепторной примесью являются дырки, а не основными носителями - электроны. Полупроводники, в которых концентрация дырок превышает концентрацию электронов проводимости, называют дырочными полупроводниками или полупроводниками р-типа. Рассмотрим контакт двух полупроводников с различными типами проводимости.
Через границу этих полупроводников происходит взаимная диффузия основных носителей: электроны из n-полупроводника диффундируют в р-полупроводник, а дырки из р-полупроводника в n-полупроводник. В результате участок n-полупроводника, граничащий с контактом, будет обеднен электронами, и в нем образуется избыточный положительный заряд, обусловленный наличием оголенных ионов примеси. Движение дырок из р-полупроводника в n-полупроводник приводит к возникновению избыточного отрицательного заряда в пограничном участке р-полупроводника. В результате образуется двойной электрический слой, и возникает контактное электрическое поле, которое препятствует дальнейшей диффузии основных носителей заряда. Этот слой называют запирающим.
Внешнее электрическое поле влияет на электропроводность запирающего слоя. Если полупроводники подключены к источнику так, как показано на рис. 55, то под действием внешнего электрического поля основные носители заряда - свободные электроны в п-полупроводнике и дырки в р-полупроводнике - будут двигаться навстречу друг другу к границе раздела полупроводников, при этом толщина p-n-перехода уменьшается, следовательно, уменьшается его сопротивление. В этом случае сила тока ограничивается внешним сопротивлением. Такое направление внешнего электрического поля называется прямым. Прямому включению p-n-перехода соответствует участок 1 на вольт-амперной характеристике (см. рис. 57).
Носители электрического тока в различных средах и вольт-амперные характеристики обобщены в табл. 1.
Если полупроводники подключены к источнику так, как показано на рис. 56, то электроны в п-полупроводнике и дырки в р-полупроводнике будут перемещаться под действием внешнего электрического поля от границы в противоположные стороны. Толщина запирающего слоя и, следовательно, его сопротивление увеличиваются. При таком направлении внешнего электрического поля - обратном (запирающем) через границу раздела проходят только неосновные носители заряда, концентрация которых много меньше, чем основных, и ток практически равен нулю. Обратному включению р-п-перехода соответствует участок 2 на вольт-амперной характеристике (рис. 57).
Таким образом, р-п-переход обладает несимметричной проводимостью. Это свойство используется в полупроводниковых диодах, содержащих один p-n-переход и применяемых, например, для выпрямления переменного тока или детектирования.
19.электроннопроводимость полупроводников,её зависимость от температуры и освещенности
Собственная электрическая проводимость полупроводников и ее зависимость от температуры и освещенности
Для понимания механизма электрической проводимости в полупроводниках рассмотрим строение полупроводниковых кристаллов и природу связей, удерживающих атомы кристалла друг возле друга. Кристаллы германия и других полупроводников имеют атомную кристаллическую решетку. Плоская схема структуры германия показана на рисунке 1.
Рис. 1
Германий — четырехвалентный элемент, во внешней оболочке атома есть четыре электрона, слабее связанных с ядром, чем остальные. Число ближайших соседей
каждого атома германия также равно 4. Взаимодействие пары соседних атомов осуществляется посредством парноэлектронной — ковалентной связи.
В ее образовании участвует по одному электрону от каждого атома. Эти ковалентные связи при низких температурах достаточно прочны, и свободных электронов в кристалле почти нет. Поэтому полупроводники при низкой температуре не проводят электрический ток. Участвующие в связи валентные электроны прочно привязаны к кристаллической решетке, и внешнее электрическое поле почти не влияет на их движение.
Электропроводимость химически чистого полупроводника возможна в том случае, когда ковалентные связи в кристаллах разрываются и появляются свободные электроны. Например, нагревание даже до небольших температур приводит к разрыву ковалентных связей, появлению свободных электронов и возникновению собственной электронной проводимости чистого полупроводника (проводимости n-типа). После ухода электрона со своего места в этой области кристалла нарушилась его нейтральность. В том месте, откуда ушел электрон, возникает избыточный положительный заряд — образуется положительная "дырка" (рис. 1). Она обладает положительным зарядом, равным по модулю заряду электрона. На освободившееся от электрона вакантное место — дырку — может перескочить другой электрон, а это эквивалентно перемещению дырки в направлении, противоположном направлению движения электрона. В отсутствие внешнего электрического поля эти свободные электроны и дырки движутся в кристалле полупроводника хаотически.
Во внешнем электрическом поле электроны перемещаются в сторону, противоположную направлению напряженности электрического поля. Положительные дырки перемещаются в направлении напряженности электрического поля (рис. 2). Процесс перемещения электронов и дырок во внешнем поле происходит по всему объему полупроводника.
Рис. 2
Электропроводность чистого полупроводника, обусловленная упорядоченным перемещением дырок, называется собственной дырочной проводимостью (проводимость p-типа). Общая удельная электропроводность полупроводника складывается из проводимостей n-типа и p-типа. При этом у чистых полупроводников число электронов проводимости всегда равно числу дырок.
Дополнительная энергия, которая должна быть затрачена, чтобы разорвать парноэлектронную связь и сделать электрон свободным, называется энергией активации. Получить эту энергию электроны могут при нагревании кристалла, при облучении его высокочастотными электромагнитными волнами и т.д.
С повышением температуры возрастает число разрывов ковалентных связей и увеличивается количество свободных электронов и дырок в кристаллах чистых полупроводников, а следовательно, возрастает удельная электропроводность и уменьшается удельное сопротивление чистых полупроводников. График зависимости удельного сопротивления чистого полупроводника от температуры приведен на рис. 3.
Рис. 3
Кроме нагревания, разрыв ковалентных связей и, как следствие, возникновение собственной проводимости полупроводников и уменьшение удельного сопротивления могут быть вызваны освещением (фотопроводимость полупроводника), а также действием сильных электрических полей.
20.электронно-дырочный переход