
- •1.Предмет и задачи химии. Понятие о материи и вещ-ве. Место химии среди естест-ных наук
- •2.Основные понятия в химии: относительная атомная масса химического элемента, отно-сительная молекулярная масса вещества, моль, молярная масса, молярный объем.
- •3. Простые и сложные вещества. Степень окисления атома элемента в соединении. Состав-ление формул бинарных соединений по известным степеням окисления.
- •4. Оксиды: определение, классификация, номенклатура, методы получения, важнейшие химические свойства.
- •Основания: определение, классификация, номенклатура, диссоциация, важнейшие химические свойства. Методы получения.
- •5. Кислоты: определение, классификация, номенклатура, диссоциация, важнейшие хими-ческие свойства. Методы получения.
- •7. Соли: определение, классификация, номенклатура. Диссоциация. Важнейшие свойства. Методы получения кислых, средних (нормальных) и основных солей.
- •10. Элементарные частицы – протоны, нейтроны и электроны.
- •11. Атомные ядра, их строение. Заряд атома. Массовое число. Понятие о химическом эле-менте. Изотопы. Относительная атомная масса химического элемента.
- •14. Периодический закон д.И. Менделеева. Структура периодической системы.
- •15. Связь электронных структур атомов с их положением в периодической системе. Причины периодичности. Валентные электроны для атомов s-, p-, d- и f-элементов.
- •17. Типы химической связи. Ковалентная связь. Метод валентных связей (вс). Механизм образования ковалентной связи (обменный и донорно-акцепторный). Свойства ковалентной связи.
- •18. Ионная связь как предельный случай ковалентной полярной связи, ее особенности.
- •Водородная связь, ее особенности.
- •Виды межмолекулярного взаимодействия.
- •21. Термодинамические системы и их классификация.
- •22. Тепловой эффект химической реакции. Экзо- и эндо-термические реакции. Внутренняя энергия и энтальпия. Их связь с тепловым эффектом реакции.
- •23. Первый закон термодинамики. Закон Гесса. Условия его применения. Теплоты и энталь-пии образования химических соединений. Следствия из закона Гесса.
- •24. Особенности термохимических уравнений. Методы определения тепловых эффектов химических реакций.
- •25. Энтропия как мера вероятности состояния системы. Факторы, определяющие величину энтропии системы. Методы определения энтропии физико-химических процессов. Второй закон термодинамики.
- •29. Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Активные молекулы. Энергия активации. Уравнение Аррениуса.
- •Катализ и катализаторы. Гомогенный и гетерогенный катализ.
- •31. Химическое равновесие. Константа равновесия для гомогенных и гетерогенных систем, факторы, от которых она зависит.
- •32. Смещение химического равновесия. Принцип Ле-Шателье.
- •33. Основные положения теории электролитической диссоциации. Степень диссоциации. Сильные и слабые электролиты. Константа диссоциации слабых электролитов. Закон разбавления Оствальда.
- •34. Диссоциация малорастворимых веществ. Произведение растворимости.
- •35. Диссоциация воды. Ионное произведение воды. Водородный показатель (рН).
- •36. Реакции обмена в растворах электролитов. Обратимые и необратимые реакции. Условия смещения равновесия в обратимых реакциях.
- •37. Гидролиз солей. Константа и степень гидролиза. Факторы, влияющие на степень гидролиза.
- •38. Окислительно-восстановительные реакции. Важнейшие окислители и восстановители. Классификация окислительно-восстановительных реакций.
- •39. Методы подбора коэффициентов в окислительно-восстановительных реакциях: метод электронного баланса, ионно-электронный метод. Роль среды в окислительно-восстановительных реакциях.
- •Гальванический элемент. Его устройство и принцип действия. (картинка!)
- •41. Эдс гальванического элемента, ее связь с ∆g процесса. Электродный потенциал, механизм его возникновения, факторы, влияющие на величину электродного потенциала.
- •42. Типы электродов: металлические, газовые, окислительно-восстановительные. Стандартный водородный электрод.
- •43. Методы измерения электродных потенциалов. Стандартные электродные потенциалы. Ряд напряжений. Уравнение Нернста.
- •44. Применение электродных потенциалов для определения возможности протекания окислительно-восстановительных реакций в растворе. ( нет?)
- •45. Понятие об амфотерности. Амфотерные элементы, их оксиды и гидроксиды. Взаимодействие амфотерных элементов и их соединений с кислотами щелочами. (дописать)!
- •46. Коррозия металлов. Виды коррозии. Химическая и электрохимическая коррозии.
10. Элементарные частицы – протоны, нейтроны и электроны.
Элементарными называют частицы, у которых на данный момент не обнаружено внутренней структуры. Еще в прошлом веке элементарными частицами считались атомы. В 1891 году физик Стони на основании опытов пришёл к выводу, что электричество переносится мельчайшими частицами, существующими в атомах всех хим. эл. Эти частицы назвали электронами. Электроны вырываются из атомов материала, из которого сделан катод. Благодаря явлению радиоактивности, был сделан вывод о том, что атом имеет сложное строение – состоит из + заряженного ядра и электронов. Атомное ядро, в свою очередь, в котором сосредоточена вся масса атома, состоит из частиц двух видов – протонов и нейтронов. Протоны имеют заряд, равный заряду электронов, но противоположны по знаку (+1), и массу, равную массе атома водорода(1). (обозначение p+). Нейтроны не несут заряда, они нейтральны и имеют массу, равную массе протона, т. е. 1. (n0) Сумма числа протонов и нейтронов называет массовым числом. Т. к. атом электронейтрален, то число протонов = числу электронов. Оно = порядковому номеру. Чтобы найти нейтроны, нужно из массы элемента вычесть число протонов.
11. Атомные ядра, их строение. Заряд атома. Массовое число. Понятие о химическом эле-менте. Изотопы. Относительная атомная масса химического элемента.
Элементарными называют частицы, у которых на данный момент не обнаружено внутренней структуры. Еще в прошлом веке элементарными частицами считались атомы. В 1891 году физик Стони на основании опытов пришёл к выводу, что электричество переносится мельчайшими частицами, существующими в атомах всех хим. эл. Эти частицы назвали электронами.. Благодаря явлению радиоактивности, был сделан вывод о том, что атом имеет сложное строение – состоит из + заряженного ядра и электронов. Атомное ядро, в свою очередь, в котором сосредоточена вся масса атома, состоит из частиц двух видов – протонов и нейтронов. Протоны имеют заряд, равный заряду электронов, но противоположны по знаку (+1), и массу, равную массе атома водорода(1). (обозначение p+). Нейтроны не несут заряда, они нейтральны и имеют массу, равную массе протона, т. е. 1. (n0) Сумма числа протонов и нейтронов называет массовым числом. Т. к. атом электронейтрален, то число протонов = числу электронов. Оно = порядковому номеру. Чтобы найти нейтроны, нужно из массы элемента вычесть число протонов.
Принадлежность атома к какому-либо элементу определяется зарядом его ядра Z, т.е. числом протонов. При этом число нейтронов и, соответственно, массовое число у атомов одного и того же элемента может различаться. Такие атомы называются изотопами.
Изотопами называют атомы с одинаковым зарядом ядра, но имеющие разные массовые числа. Обычно приводимая в ПС относительная атомная масса хим. эл. явл. средним значением атомных масс природной смеси изотопов данного элемента с учётом их относительного содержания в природе, поэтому их значения довольно часто дробные. (изотопы водорода протий, дейтерий, тритий – различны по свойствам, в отличие от изотопов др. эл.)
Химический элемент – это совокупность атомов с одинаковым зарядом ядра. Положение хим. эл. в ПС зависит от величины заряда ядра атома, то есть от числа протонов в нём.
Атомная масса, определение
Относительная атомная масса (сокращенно – атомная масса) элемента — есть отношение массы его атома к 1/12 части массы атома 12С (углерод).
Первоначально при вычислениях атомных масс за единицу массы принимали массу атома водорода как самого легкого элемента и по отношению к нему вычисляли массы других элементов. Но так как атомные массы большинства веществ определяются, исходя из состава их кислородных соединений, то фактически вычисления производились по отношению к атомной массе кислорода, которая считалась равной 16. Отношение между атомными массами кислорода и водорода принимали равным 16:1. Впоследствии более точные измерения показали, что это отношение равно 15.874:1 или 16:1.0079. Изменение атомной массы кислорода повлекло бы за собой изменение атомных масс большинства элементов. Поэтому было решено оставить для кислорода атомную массу 16, приняв атомную массу водорода равной 1.0077.
Таким образом, за единицу атомной массы принималась 1/16 часть атома кислорода, получившая название кислородной единицы.
В дальнейшем было установлено, что природный кислород представляет собой смесь изотопов, так что кислородная единица массы характеризует среднее значение массы атомов природных изотопов кислорода.
Для атомной физики такая единица оказалась неприемлемой, и в этой отрасли науки за единицу атомной массы была принята 1/16 часть массы атома кислорода 16О. В результате оформились две шкалы атомных масс — химическая и физическая. Наличие двух шкал атомных масс создавало большие неудобства.
В 1961 году принята единая шкала относительных атомных масс, в основу которой положена 1/12 часть массы атома изотопа углерода 12С, названная атомной единицей массы (а.е.м.).
1. |
1 а.е.м= 1.66·10-27 (кг) |
В современной шкале относительные массы кислорода и водорода равны соответственно 15.9994 и 1.00794.