
- •1.Предмет и задачи химии. Понятие о материи и вещ-ве. Место химии среди естест-ных наук
- •2.Основные понятия в химии: относительная атомная масса химического элемента, отно-сительная молекулярная масса вещества, моль, молярная масса, молярный объем.
- •3. Простые и сложные вещества. Степень окисления атома элемента в соединении. Состав-ление формул бинарных соединений по известным степеням окисления.
- •4. Оксиды: определение, классификация, номенклатура, методы получения, важнейшие химические свойства.
- •Основания: определение, классификация, номенклатура, диссоциация, важнейшие химические свойства. Методы получения.
- •5. Кислоты: определение, классификация, номенклатура, диссоциация, важнейшие хими-ческие свойства. Методы получения.
- •7. Соли: определение, классификация, номенклатура. Диссоциация. Важнейшие свойства. Методы получения кислых, средних (нормальных) и основных солей.
- •10. Элементарные частицы – протоны, нейтроны и электроны.
- •11. Атомные ядра, их строение. Заряд атома. Массовое число. Понятие о химическом эле-менте. Изотопы. Относительная атомная масса химического элемента.
- •14. Периодический закон д.И. Менделеева. Структура периодической системы.
- •15. Связь электронных структур атомов с их положением в периодической системе. Причины периодичности. Валентные электроны для атомов s-, p-, d- и f-элементов.
- •17. Типы химической связи. Ковалентная связь. Метод валентных связей (вс). Механизм образования ковалентной связи (обменный и донорно-акцепторный). Свойства ковалентной связи.
- •18. Ионная связь как предельный случай ковалентной полярной связи, ее особенности.
- •Водородная связь, ее особенности.
- •Виды межмолекулярного взаимодействия.
- •21. Термодинамические системы и их классификация.
- •22. Тепловой эффект химической реакции. Экзо- и эндо-термические реакции. Внутренняя энергия и энтальпия. Их связь с тепловым эффектом реакции.
- •23. Первый закон термодинамики. Закон Гесса. Условия его применения. Теплоты и энталь-пии образования химических соединений. Следствия из закона Гесса.
- •24. Особенности термохимических уравнений. Методы определения тепловых эффектов химических реакций.
- •25. Энтропия как мера вероятности состояния системы. Факторы, определяющие величину энтропии системы. Методы определения энтропии физико-химических процессов. Второй закон термодинамики.
- •29. Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Активные молекулы. Энергия активации. Уравнение Аррениуса.
- •Катализ и катализаторы. Гомогенный и гетерогенный катализ.
- •31. Химическое равновесие. Константа равновесия для гомогенных и гетерогенных систем, факторы, от которых она зависит.
- •32. Смещение химического равновесия. Принцип Ле-Шателье.
- •33. Основные положения теории электролитической диссоциации. Степень диссоциации. Сильные и слабые электролиты. Константа диссоциации слабых электролитов. Закон разбавления Оствальда.
- •34. Диссоциация малорастворимых веществ. Произведение растворимости.
- •35. Диссоциация воды. Ионное произведение воды. Водородный показатель (рН).
- •36. Реакции обмена в растворах электролитов. Обратимые и необратимые реакции. Условия смещения равновесия в обратимых реакциях.
- •37. Гидролиз солей. Константа и степень гидролиза. Факторы, влияющие на степень гидролиза.
- •38. Окислительно-восстановительные реакции. Важнейшие окислители и восстановители. Классификация окислительно-восстановительных реакций.
- •39. Методы подбора коэффициентов в окислительно-восстановительных реакциях: метод электронного баланса, ионно-электронный метод. Роль среды в окислительно-восстановительных реакциях.
- •Гальванический элемент. Его устройство и принцип действия. (картинка!)
- •41. Эдс гальванического элемента, ее связь с ∆g процесса. Электродный потенциал, механизм его возникновения, факторы, влияющие на величину электродного потенциала.
- •42. Типы электродов: металлические, газовые, окислительно-восстановительные. Стандартный водородный электрод.
- •43. Методы измерения электродных потенциалов. Стандартные электродные потенциалы. Ряд напряжений. Уравнение Нернста.
- •44. Применение электродных потенциалов для определения возможности протекания окислительно-восстановительных реакций в растворе. ( нет?)
- •45. Понятие об амфотерности. Амфотерные элементы, их оксиды и гидроксиды. Взаимодействие амфотерных элементов и их соединений с кислотами щелочами. (дописать)!
- •46. Коррозия металлов. Виды коррозии. Химическая и электрохимическая коррозии.
-
Основания: определение, классификация, номенклатура, диссоциация, важнейшие химические свойства. Методы получения.
Основания – это электролиты, диссоцирующие в водном растворе с образованием катиона металла (или иона аммония NH4+) и гидроксогруппы ОН–.
Названия оснований
Общая формула оснований: Мe(ОН)n. Согласно международной номенклатуре названия оснований составляются из слова гидроксид и названия металла. Например, NaOH – гидроксид натрия. Если элемент образует несколько оснований, то в название указывается степень его окисления римской цифрой в скобках: Fe(OH)2 – гидроксид железа (II).
Помимо этих названий для некоторых наиболее важных оснований применяются и другие, в основном традиционные русские названия. Например, гидроксид натрия NaOH называют едкий натр, гидроксид кальция Ca(OH)2 – гашеная известь, КОН – едкое кали.
Число ОН– -групп, содержащиеся в молекуле основания, определяет его кислотность. По этому признаку основания делятся на однокислотные (КОН), двухкислотные (Cu(OH)2), трехкислотные (Cr(OH)3).
Гидроксиды, растворимые в воде, называют щелочами. Это гидроксиды щелочных и щелочно-земельных металлов: NaOH, KOH, CsOH, Ba(OH)2, Ca(OH)2, Sr(OH)2.
Способы получения щелочей и оснований
1. Растворимые в воде основания, щелочи, получают при взаимодействии щелочных и щелочно-земельных металлов с водой.
2 Na + 2 H2O → 2 NaOH + H2
2. Растворимые в воде основания, щелочи, получают при взаимодействии оксидов щелочных и щелочно-земельных металлов с водой.
Na2O + H2O → 2 NaOH
3. Щелочи можно получить электролизом водных растворов соответствующих солей (Например, гидроксид натрия можно получить электролизом раствора соли NaCl).
2 NaCl + 2 H2O → 2 NaOH + H2 + Cl2
Катод: 2 H2O + 2e– → H2 + 2 OH–
Анод: 2 Cl– – 2e– → Cl2
4. Малорастворимые или нерастворимые в воде основания получают путем взаимодействия растворов соответствующих солей с растворами щелочей. Например:
CuSO4 + 2 NaOH → Cu(OH)2 + Na2SO4
Химические свойства оснований
Основания в большинстве случаев представляют собой твердые вещества. По отношению к воде их модно разделить на две группы: растворимые в воде – щелочи и нерастворимые в воде. Растворы щелочей мыльные на ощупь. Изменяют окраску индикаторов: лакмуса в синий цвет, фенолфталеина – в малиновый, метилового оранжевого – в желтый цвет.
1. Электролитические свойства оснований. Одно из наиболее характерных свойств оснований – электролитическая способность к диссоциации в жидком состоянии. При диссоциации основания образуется гидроксогруппа ОН– и основной остаток – катион.
Диссоциация оснований, содержащих одну гидроксогруппу ОН–, протекает в одну ступень:
КОН ↔ К+ + ОН–
NH4OH NH4+ + OH–
Основания, содержащие несколько гидроксогрупп в молекуле, диссоциируют ступенчато, с постепенным отщеплением ионов OH–.
Катион, образующийся после отщепления от молекулы гидроксида одной или несколько гидроксид-ионов, называется основным остатком. Количество основных остатков, соответствующих данному гидроксиду, равно числу гидроксогрупп OH– в составе молекулы гидроксида.
Название основного остатка образуется и русского названия металла в составе остатка с добавлением слова «ион». Если остатки содержат одну или две гидроксогруппы, к названию металла добавляются приставки «гидроксо» или «дигидроксо».
Например: Fe(OH)3 OH– + Fe(OH)2+ дигидроксожелезо (III)-ион
Fe(OH)2+ OH– + FeOH2+ гидроксожелезо (III)-ион
FeOH2+ OH– + Fe3+ железо (III)-ион
С точки зрения теории электролитической диссоциации все общие свойства оснований (мыльность на ощупь, изменение цвета индикаторов, взаимодействие с кислотами, кислотными оксидами, солями) обусловлены наличием гидроксид-ионов в их составе.
2. Взаимодействие с кислотами. Это реакция нейтрализации, приводящая к образованию соли и воды:
2 NaOH + H2SO4 → Na2SO4 + H2O
3. Щелочи взаимодействуют с кислотными оксидами:
Ca(OH)2 + CO2 → CaCO3 + H2O
-
Щелочи взаимодействуют с растворами солей. Данное взаимодействие осуществляется, если после реакции образуются труднорастворимые или слабые основания. Например:
2 КОН + CuSO4 → Cu(OH)2 + K2SO4
5. При нагревании нерастворимые основания разлагаются на оксид и воду. Например: 2 Fe(OH)3 → Fe2O3 + 3 H2O