
- •1.Предмет и задачи химии. Понятие о материи и вещ-ве. Место химии среди естест-ных наук
- •2.Основные понятия в химии: относительная атомная масса химического элемента, отно-сительная молекулярная масса вещества, моль, молярная масса, молярный объем.
- •3. Простые и сложные вещества. Степень окисления атома элемента в соединении. Состав-ление формул бинарных соединений по известным степеням окисления.
- •4. Оксиды: определение, классификация, номенклатура, методы получения, важнейшие химические свойства.
- •Основания: определение, классификация, номенклатура, диссоциация, важнейшие химические свойства. Методы получения.
- •5. Кислоты: определение, классификация, номенклатура, диссоциация, важнейшие хими-ческие свойства. Методы получения.
- •7. Соли: определение, классификация, номенклатура. Диссоциация. Важнейшие свойства. Методы получения кислых, средних (нормальных) и основных солей.
- •10. Элементарные частицы – протоны, нейтроны и электроны.
- •11. Атомные ядра, их строение. Заряд атома. Массовое число. Понятие о химическом эле-менте. Изотопы. Относительная атомная масса химического элемента.
- •14. Периодический закон д.И. Менделеева. Структура периодической системы.
- •15. Связь электронных структур атомов с их положением в периодической системе. Причины периодичности. Валентные электроны для атомов s-, p-, d- и f-элементов.
- •17. Типы химической связи. Ковалентная связь. Метод валентных связей (вс). Механизм образования ковалентной связи (обменный и донорно-акцепторный). Свойства ковалентной связи.
- •18. Ионная связь как предельный случай ковалентной полярной связи, ее особенности.
- •Водородная связь, ее особенности.
- •Виды межмолекулярного взаимодействия.
- •21. Термодинамические системы и их классификация.
- •22. Тепловой эффект химической реакции. Экзо- и эндо-термические реакции. Внутренняя энергия и энтальпия. Их связь с тепловым эффектом реакции.
- •23. Первый закон термодинамики. Закон Гесса. Условия его применения. Теплоты и энталь-пии образования химических соединений. Следствия из закона Гесса.
- •24. Особенности термохимических уравнений. Методы определения тепловых эффектов химических реакций.
- •25. Энтропия как мера вероятности состояния системы. Факторы, определяющие величину энтропии системы. Методы определения энтропии физико-химических процессов. Второй закон термодинамики.
- •29. Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Активные молекулы. Энергия активации. Уравнение Аррениуса.
- •Катализ и катализаторы. Гомогенный и гетерогенный катализ.
- •31. Химическое равновесие. Константа равновесия для гомогенных и гетерогенных систем, факторы, от которых она зависит.
- •32. Смещение химического равновесия. Принцип Ле-Шателье.
- •33. Основные положения теории электролитической диссоциации. Степень диссоциации. Сильные и слабые электролиты. Константа диссоциации слабых электролитов. Закон разбавления Оствальда.
- •34. Диссоциация малорастворимых веществ. Произведение растворимости.
- •35. Диссоциация воды. Ионное произведение воды. Водородный показатель (рН).
- •36. Реакции обмена в растворах электролитов. Обратимые и необратимые реакции. Условия смещения равновесия в обратимых реакциях.
- •37. Гидролиз солей. Константа и степень гидролиза. Факторы, влияющие на степень гидролиза.
- •38. Окислительно-восстановительные реакции. Важнейшие окислители и восстановители. Классификация окислительно-восстановительных реакций.
- •39. Методы подбора коэффициентов в окислительно-восстановительных реакциях: метод электронного баланса, ионно-электронный метод. Роль среды в окислительно-восстановительных реакциях.
- •Гальванический элемент. Его устройство и принцип действия. (картинка!)
- •41. Эдс гальванического элемента, ее связь с ∆g процесса. Электродный потенциал, механизм его возникновения, факторы, влияющие на величину электродного потенциала.
- •42. Типы электродов: металлические, газовые, окислительно-восстановительные. Стандартный водородный электрод.
- •43. Методы измерения электродных потенциалов. Стандартные электродные потенциалы. Ряд напряжений. Уравнение Нернста.
- •44. Применение электродных потенциалов для определения возможности протекания окислительно-восстановительных реакций в растворе. ( нет?)
- •45. Понятие об амфотерности. Амфотерные элементы, их оксиды и гидроксиды. Взаимодействие амфотерных элементов и их соединений с кислотами щелочами. (дописать)!
- •46. Коррозия металлов. Виды коррозии. Химическая и электрохимическая коррозии.
3. Простые и сложные вещества. Степень окисления атома элемента в соединении. Состав-ление формул бинарных соединений по известным степеням окисления.
Простые и сложные вещества
Для систематизации информации об известных науке веществах их объединяют в группы по сходности состава, строения и химических свойств. Все вещества можно разделить на две обширные группы — простых и сложных веществ.
Простые вещества — это вещества, образованные из атомов одного элемента.
Например, простое вещество уголь образовано атомами элемента углерода, простое вещество железо — атомами элемента железа, простое вещество азот — атомами элемента азота.
Сложные вещества, или химические соединения - это вещества, образованные атомами разных элементов.
Так, оксид меди (II) образован атомами элементов меди и кислорода, вода — атомами элементов водорода и кислорода.
Понятие «простое вещество» нельзя отождествлять с понятием «химический элемент». Простое вещество характеризуется определенной плотностью, растворимостью, температурой кипения и плавления и т.п. Эти свойства относятся к совокупности атомов, и для разных простых веществ они различны. Химический элемент характеризуется определенным положительным зарядом ядра атома (порядковым номером), степенью окисления, изотопным составом и т.д. Свойства элементов относятся к его отдельным атомам. Сложные вещества состоят не из простых веществ, а из элементов. Например, вода состоит не из простых веществ кислорода и водорода, а из элементов кислорода и водорода. Названия элементов обычно совпадают с названиями соответствующих им простых веществ (исключения: углерод и одно из простых веществ кислорода — озон).
Многие химические элементы образуют несколько простых веществ, различных по строению и свойствам. Это явление называется аллотропией, а образующиеся вещества — аллотропными видоизменениями или модификациями. Так, элемент кислород образует две аллотропные модификации — кислород и озон; элемент углерод — три: алмаз, графит и карбин; несколько модификаций образует элемент фосфор.
Простые вещества делят на металлы и неметаллы. Неметаллов известно всего 22. Это водород, гелий, бор, углерод, азот, кислород, фтор, неон, кремний, фосфор, сера, хлор, аргон, мышьяк, селен, бром, криптон, теллур, йод, ксенон, астат, радон.
Сложные вещества можно разделить на две большие категории: неорганические и органические. К органическим веществам относятся практически все соединения углерода, за исключением его оксидов, солей угольной кислоты, карбидов и некоторых других.
Сложные неорганические вещества принято подразделять на четыре класса: оксиды, основания (гидроксиды), кислоты, соли. Кроме того, выделяют также класс комплексных соединений. Данная классификация является традиционной, но не отражает всего многообразия известных сложных неорганических веществ.
Степень окисления
При классификации различных веществ, составления формул химических соединений и описании их свойств используется характеристика состояния атомов элементов – степень окисления. Степень окисления – это количественная характеристика состояния атома элемента в соединении.
Степень окисления – это условный заряд атома в молекуле химического соединения, вычисленный исходя из предположения, что все молекулы химического соединения состоят из ионов, то есть общие электронные пары переходят к наиболее электроотрицательному элементу.
Степень окисления может быть отрицательным, положительным числом или равняться нулю. Степень окисления обозначают арабскими цифрами со знаком (+) или (–) пред цифрой, и записывают над символом элемента в формуле химического соединения.
Отрицательное значение степени окисления приписывается атому, притянувшему к себе электроны, и его величина, равная числу притянутых электронов, отмечается знаком (–).
Положительное значение степени окисления определяется числом электронов оттянутых от данного атома, и отмечается знаком (+).
При вычислении степеней окисления атомов используется следующая совокупность правил:
1) в молекулах простых веществ степень окисления атома равна нулю;
2) водород в соединениях с неметаллами имеет степень окисления (+1), исключение составляют гидриды, в которых степень окисления водорода равна (–1);
3) кислород во всех сложных соединениях имеет степень окисления (–2), кроме OF2 и различных перекисных соединений.
4) фтор, как наиболее электроотрицательный элемент, во всех соединениях имеет степень окисления (–1);
5) галогены в соединениях с водородом и металлами проявляют отрицательную степень окисления (–1), а с кислородом – положительную, за исключением фтора.
6) все металла в своих соединениях характеризуются только положительными степенями окисления, в том числе щелочные металлы имеют степень окисления (+1), а щелочно-земельные – (+2);
7) сумма степеней окисления всех атомов в молекуле равна нулю, сумма степеней окисления всех атомов в сложном ионе равна заряду этого иона.
Названия бинарных соединений состоят из двух слов – названия образующих их химических элементов. Первое слово находится в именительном падеже – это корень латинского названия более электроотрицательного элемента плюс окончание –ид. Второе слово в родительном падеже – это русское название металла или менее электроотрицательного элемента. (NaCl – хлорид натрия). Если же электроположительный элемент проявляет разные со, то это отражается в названии, обозначив со римской цифрой, которая ставится в конце (FeO – оксид железа(II)).
В некоторых случаях число атомов элементов обозначается при помощи названий числительных на греческом языке – моно, ди , три, тетра, пента, геска, .. окта… (CO – монооксид углерода).