
- •1. Способы кодировки информации в сетях эвм
- •2. Топология построения сетей.
- •3. Структура домену.
- •Адресация узлов в сети (аппаратные, символьные и др. Адреса)
- •Оборудование сети
- •Протокол tcp, назначение и реализация
- •Протокол ip и его основные функции
- •Протокол arp
- •Классы ip-адрес
- •Принцип эталонной модели osi
- •Принцип построения ip –адреса
- •Основные уровни модели osi
- •Понятие о протоколе и стеку протоколов.
- •Настройка пк для работы в сети
- •Стек tcp / ip.
- •Основные этапы разработки баз данных
- •17. Инфологичная модель данных ("сущность-связь").
- •18. Общие понятия реляционного подхода к организации бд
- •19. Архитектура банка данных и три типа моделей.
- •20. Реляционная модель данных. Принципиальные отличия иерархической и сетевой моделей данных.
- •21. Логическая и физическая модели данных.
- •22. Базовые понятия реляционных баз данных. Правила Кодда.
- •23. Схема отношения, схема базы данных, типы связей
- •24. Проектирование реляционных баз данных с использованием нормализации. Нормальные формы
- •25. Алгоритм нормализации
- •27. Основные структурные элементы бд ms Access : таблицы, запить, формы, отчеты, макросы, модули.
- •28. Работа с запросами в субд Access. Создание запроса-выборки. Создание итогового запроса. Групповые операции. Расчеты в запитые с помощью выражений.
- •29. Работа с запросами в субд Access. Запить в режиме sql.
- •Insert into таблица select ...;
- •30. Работа с формами в субд Access. Создание форм, элементов управления и элементов макета. Свойства формы. Свойства элемента управления.
- •31. Использование Visual Basic For Application. Создание процедур обработки событий.
- •32. Разработка отчетов в субд Access. Группирование и сортировка записей. Расчеты в отчете.
- •33. Создание главной кнопочной формы. Налаживание параметров запуска
- •34. Макросы и модули в ms Access.
- •35. Запись sql –операторов.
- •36. Создание простых запросов языком sql
- •37. Группирование результатов средствами языка sql.
- •38. Создание много табличных запросов средствами языка sql.
- •39. Изменение содержимого базы данных средствами языка sql.
- •40. Идентификаторы языка sql
- •41. Создание баз данных средствами языка sql.
- •42. Технологичность программного обеспечения. Модули. Требования к модулям.
- •43. Разработка программного обеспечения (восходящая и нисходящая).
- •44. Средства описания структурных алгоритмов.
- •45. Эффективность. Уменьшение времени выполнения программы.
- •46. Программирование "с защитой от ошибок".
- •47. Блочно-иерархический подход к созданию сложных систем.
- •48. Жизненный цикл и этапы разработки программного обеспечения.
- •49. Модели (каскадная, спиральная) жизненного цикла программного обеспечения.
- •50. Управление программным проектом (начало, измерение, оценка, риски, планирования, трассировки, контроль).
- •51. Планирование проектных задач.
- •52. Размерно-ориентированные метрики
- •53. Функционально-ориентированные метрики.
- •54. Классические методы анализа. Структурный анализ. Анализ, который ориентируется на структуры данных.
- •56. Модульность. Информационная закрытость. Связность модуля.
- •57. Сложность программной системы.
- •58. Структурное тестирование программного обеспечения
- •59. Функциональное тестирование программного обеспечения
- •60. Технология разработки объектно-ориентированных программных систем
- •Дистанционное образование: особенности, принципы, методы, организационные формы, программное обеспечение.
- •Возможности использования компьютерных сетей в учебно-воспитательном процессе.
- •5. Контроль в учебно-воспитательном процессе. Автоматизация контроля. Психолого-педагогическая диагностика на основе компьютерного тестирования.
- •6. Стандарты электронной учебы
- •7. Цели и задачи преподавания информатики в средней школе
- •8. Содержание I структура школьного курса информатики. Действующие программы курса информатики.
- •9.Допрофильная подготовка по информатике
- •10. Критерии оценивания знаний и умений учеников из школьного курса информатики.
- •11. Курсы по выбору для профильной учебы информатики.
- •12. Технологическая учеба информатики : понятие информационно-технологических знаний, умений, навыков.
- •13. Методические подходы к технологической учебе информатики.
- •14. Организация дополнительных внеурочных форм учебы информатики в школе: кружки, факультативы, олимпиады.
- •15. Специфика урока информатики. Подготовка учителя к уроку. Организация I проведения разных типов урока из информатики.
- •16. Учебно-методическое и программное обеспечение школьного курса информатики. Классификация педагогических программных средств. Приблизительный состав программного обеспечения
- •Раздел 1: 1) Алгоритм и алгоритмический язык, 2) Построение алгоритма для решения задач.
- •Раздел 2:1) Устройство эвм, 2) Знакомство с программированием, 3) Роль эвм в современном обществе перспективы развития вычислительной техники.
- •Часть 1 - персональный компьютер(история создания, устройство, операционная система, графический редактор, текстовый редактор, архивация, вирусы, электронные таблицы, субд, сети).
- •Часть 2 - Основы алгоритмизации и программирования.
- •Методические особенности учебных пособий из курса информатики.
- •9 Класс
44. Средства описания структурных алгоритмов.
Любой сколько угодно сложный алгоритм можно представить с использованием трех основных управляющих конструкций, в языках программирования высокого уровня появились управляющие операторы для реализации соответствующих конструкций.Эти три конструкции принято считать базовыми. К ним относят конструкции:
- следование - помечает последовательное выполнение действий;
- разветвление - отвечает выбора одного из двух вариантов действий;
- цикл-поки - определяет повторение действий, пока не будет нарушено некоторое условие, выполнение которого проверяется в начале цикла.
Кроме схем, для описания алгоритмов можно использовать псевдокод, Flow -форми и диаграммы Насс-Шнейдермана. Все перечисленные нотации с одной стороны базируются на тех же основных структурах, что и структурное программирование, а из другого - допускают разные ровные детализации.
Диаграммы Насс-Шнейдермана являются развитием Flow -форм.Основное их отличие от Flow -форм заключается в том, что область обозначения условий и вариантов разветвления изображают в виде треугольников. Такое обозначение обеспечивает большую наглядность представления алгоритма.
Flow -форми являют собой графическую нотацию описания структурных алгоритмов, которая иллюстрирует вложенность структур.Каждый символ Flow -форми отвечает управляющей структуре и изображается в виде прямоугольника. Псевдокод - формализировано текстовое описание алгоритма (текстовая нотация). В литературе были предложены несколько вариантов псевдокод.
45. Эффективность. Уменьшение времени выполнения программы.
Традиционно эффективными считают программы, что требуют минимального времени выполнения и / или минимального объема оперативной памяти Особенные требования к эффективности программного обеспечения предъявляют при наличии ограничений (на время реакции системы, на объем оперативной памяти и т. п.). В случаях, когда обеспечение эффективности не требует серьезных временных и трудовых расходов, а также не приводит к существенному ухудшению технологических свойств, необходимо это требование иметь в виду.
Умный подход к обеспечению эффективности розроблювального программного обеспечения заключается в том, чтобы в первую очередь оптимизировать те фрагменты программы, которые существенно влияют на характеристики эффективности. Для уменьшения времени выполнения некоторой программы в первую очередь следует проанализировать циклические фрагменты с большим количеством повторений : экономия времени выполнения одной итерации цикла будет умножена на количество итераций.
Частично проблему эффективности программ разрешают за программиста компиляторы. Средства оптимизации, которые используются компиляторами, делят на две группы:
- машинно-зависимые, то есть ориентированы на конкретный машинный язык, выполняют оптимизацию кодов на уровне машинных команд, например, исключения лишних пересылок, использования более эффективных команд и т. п.;
- машинно-независимые выполняют оптимизацию на уровне входного языка, например, вынесения вычислений константных (независимых от индекса цикла) выражений из циклов и т. п.
Выбор алгоритма влияет на эффективность больше, чем любой другой элемент дизайна. Более сложные алгоритмы и структуры данные могут хорошо оперировать с большим количеством элементов, в то время как простые алгоритмы подходят для небольших объемов данных - накладные расходы на инициализацию более сложного алгоритма могут перевесить выгоду от его использования.
]