Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
6сем ПБЗ шпоры.doc
Скачиваний:
101
Добавлен:
27.10.2018
Размер:
2.74 Mб
Скачать

62. Многомерная модель данных. Olap.

OLAP= On-Line Analytical Processing, оперативная аналитическая обработка.

Различают три вида OLAP:

  • ROLAP – Relational OLAP (подразумевает, что данные хранятся в реляционной БД)

  • MOLAP – Multi-dimensional OLAP (предполагается многомерная БД)

  • HOLAP – Hybrid OLAP (комбинированный подход).

Рассмотрим второй вид подробнее. Система MOLAP обеспечивает ведение многомерных баз данных, в которых данные концептуально хранятся в ячейках многомерного массива. Поддерживающая СУБД называется многомерной. В качестве простого примера можно привести трехмерный массив, представляющий, соответственно, товары, заказчиков и периоды времени. Значение каждой отдельной ячейки может представлять общий объем указанного товара, проданного заказчику в указанный период времени.

Если имеется достаточно четкое понимание структуры совокупности данных, то мо

гут быть известны и все связи между данными. Более того, переменные такой совокупности (не в смысле обычных языков программирования), грубо говоря, могут быть разделены на зависимые и независимые. В предыдущем примере товар, заказчик и период времени можно считать независимыми переменными, а количество — единственной зависимой переменной. В общем случае независимые переменные — это переменные, значения которых вместе определяют значения зависимых переменных (точно так же, как, если воспользоваться реляционной терминологией, потенциальный ключ является множеством столбцов, значения которых определяют значения остальных столбцов). Следовательно, независимые переменные задают размерность массива, с помощью которого организуются данные, а также образуют схему адресации для данного массива. Значения зависимых переменных, которые представляют фактические данные, сохраняются в ячейках массива.

Примечание. Различие между значениями независимых, или размерных, переменных,

и значениями зависимых, или неразмерных, переменных, иногда характеризуют как различие между местонахождением и содержанием.

Большинство совокупностей данных изначально остаются не изученными в полной мере. По этой причине мы обычно стремимся, в первую очередь, проанализировать данные, чтобы лучше их понять. Часто недостаточное понимание может быть настолько существенным, что заранее невозможно определить, какие переменные

являются независимыми, а какие зависимыми. Тогда независимые переменные выбираются согласно текущему представлению о них (т.е. на основании некоторой гипотезы), после чего проверяется результирующий массив для определения того, насколько удачно выбраны независимые переменные (см. раздел 22.7). Подобный подход приводит к тому, что выполняется множество итераций по принципу проб и ошибок. Поэтому система обычно допускает замену размерных и неразмерных переменных, и эту операцию называют сменой осей координат (pivoting). Другие поддерживаемые операции включают транспозицию массива и переупорядочение размерностей. Должен быть также предусмотрен способ добавления размерностей.

Ячейки массива часто оказываются пустыми (и чем больше размерностей, тем чаще наблюдается такое явление). Иными словами, массивы обычно бывают разреженными. Предположим, например, что товар р не продавался заказчику с в течение всего периода времени t. Тогда ячейка [с,р, t] будет пустой (или в лучшем случае содержать нуль). Многомерные СУБД поддерживают различные методы хранения разреженных массивов в более эффективном, сжатом представлении. К этому следует добавить, что пустые ячейки соответствуют отсутствующей информации и, следовательно, системам необходимо предоставлять некоторую вычислительную поддержку для пустых ячеек. Такая поддержка действительно

обычно имеется, но стиль ее, к сожалению, похож на стиль, принятый в языке SQL.

Если данная ячейка пуста, то информация или неизвестна, или не была введена, или не применима, или отсутствует в силу других причин.

Независимые переменные часто связаны в иерархии, определяющие пути, по которым может происходить агрегирование зависимых данных. Например, существует временная иерархия, связывающая секунды с минутами, минуты с часами, часы с сутками, сутки с неделями, недели с месяцами, месяцы с годами. Или другой пример: возможна иерархия композиции, связывающая детали с комплектом деталей, комплекты деталей с узлом, узлы с модулем, модули с изделием. Часто одни и те же данные могут агрегироваться многими разными способами, т.е. одна и та же независимая переменная может принадлежать ко многим различным иерархиям. Система предоставляет операторы для прохождения вверх (drill up) и прохождения вниз (drill down) по такой иерархии. Прохождение вверх означает переход от нижнего уровня агрегирования к верхнему, а прохождение вниз — переход в противоположном направлении. Для работы с иерархиями имеются и другие операции, например операция для переупорядочения уровней иерархии.

Между операциями прохождения вверх (drill up) и накопления итогов (roll up) есть одно тонкое различие: операция накопления итогов — это операция реализации требуемых способов группирования и агрегирования, а операция прохождения вверх— это операция доступа к результатам реализации этих способов. А примером операции прохождения вниз может служить такой запрос: "Итоговое количество поставок известно; получить итоговые данные для каждого отдельного поставщика". Безусловно, для ответа на этот запрос должны быть доступными (или вычислимыми) данные более детализированных уровней.

В продуктах многомерных баз данных предоставляется также ряд статистических и других математических функций, которые помогают формулировать и проверять гипотезы (т.е. гипотезы, касающиеся предполагаемых связей). Кроме того, предоставляются инструменты визуализации и генерации отчетов, помогающие решать подобные задачи.

Но, к сожалению, для многомерных баз данных пока еще нет никакого стандартного языка запросов, хотя ведутся исследования в целях разработки исчисления, на котором мог бы базироваться такой стандарт. Но ничего подобного реляционной теории нормализации, которая могла бы служить научной основой для проектирования многомерных баз данных, пока, к сожалению, нет.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]