
- •Структуры и алгоритмы обработки данных
- •Алгоритмы. Основные определения
- •От задачи к программе
- •Написание программы.
- •Типы данных, структуры данных и абстрактные типы данных
- •Указатели и курсоры
- •Время выполнения программ
- •Измерение времени выполнения программы
- •Степень (порядок) роста
- •Вычисление времени выполнения программ
- •Линейные абстрактные типы данных атд «Список»
- •Реализация списков посредством массивов
- •Реализация списков с помощью указателей
- •Атд «Стек»
- •Атд «Очередь»
- •Реализация очередей с помощью циклических массивов
- •Нелинейные абстрактные типы данных Деревья
- •Порядок узлов
- •Прямой, обратный и симметричный обходы дерева
- •Помеченные деревья и деревья выражений
- •Представление деревьев с помощью массивов
- •Специальные виды множеств атд “Дерево двоичного поиска”
- •Атд "Словарь", основанный
- •Представление ориентированных графов
- •Атд для ориентированных графов
- •Задача нахождения кратчайшего пути
- •Int **c, // массив стоимостей
- •Int *d) // массив кратчайших
- •Остовные деревья минимальной стоимости
- •Обход графов
- •Поиск в ширину
- •Поиск в глубину
- •Сортировка
- •Простые схемы сортировки Метод «пузырька»
- •Сортировка вставками
- •Быстрая сортировка
- •Пирамидальная сортировка
- •«Карманная» сортировка
- •Порядковые статистики
- •Методы разработки алгоритмов. Типы алгоритмов
- •Алгоритмы «разделяй и властвуй» (метод декомпозиции)
- •Баланс подзадач
- •Динамическое программирование
- •Перемножение нескольких матриц
- •Шаг 1: строение оптимальной расстановки скобок
- •Шаг 2: рекуррентное соотношение
- •Шаг 3: вычисление оптимальной стоимости
- •Void MatrixChainOrder(int n, // кол-во матриц
- •Int p[], // размеры матриц
- •Int **s) // оптимальное k
- •Шаг 4: построение оптимального решения
- •Int **s, // таблица, полученная
- •Int I, // индексы
- •Когда применимо динамическое программирование?
- •Оптимальность для подзадач
- •Перекрывающиеся подзадачи
- •«Жадные» алгоритмы
- •"Жадные" алгоритмы как эвристики
- •Когда применим жадный алгоритм?
- •Принцип жадного выбора
- •Оптимальность для подзадач
- •Поиск с возвратом
- •Функции выигрыша
- •Метод ветвей и границ
- •Структуры данных и алгоритмы для внешней памяти
- •Внешняя сортировка
- •Хранение данных в файлах
- •Простая организация данных
- •Хешированные файлы
- •Индексированные файлы
- •Содержание
- •Глава I. Линейные абстрактные типы данных 31
- •Глава II. Сортировка 108
Измерение времени выполнения программы
На время выполнения программы влияют следующие факторы:
-
Ввод исходной информации в программу.
-
Качество скомпилированного кода исполняемой программы.
-
Машинные инструкции (естественные и ускоряющие), используемые для выполнения программы.
-
Временнáя сложность алгоритма соответствующей программы.
Поскольку время выполнения программы зависит от ввода исходных данных, его можно определить как функцию от исходных данных. Но зачастую время выполнения программы зависит не от самих исходных данных, а от их «размера». Здесь хорошим примером являются задачи сортировки. В них в качестве исходных данных выступает список элементов, подлежащих сортировке, а в качестве выходного результата – те же самые элементы, отсортированные в порядке возрастания или убывания. Естественной мерой объема входной информации для программы сортировки будет число элементов, подлежащих сортировке, или, другими словами, длина входного списка. В общем случае длина входных данных – подходящая мера объема входной информации. Иногда под размером понимается общее число битов, необходимых для представления всех входных данных. Иногда размер входа определяется не одним числом, а несколькими, например, числом вершин и числом ребер графа.
Обычно говорят, что время выполнения программы имеет порядок T(n) от входных данных размера n. Единица измерения T(n) не определена и, если не оговорено иначе, мы будем понимать T(n) как количество инструкций, выполняемых на идеализированном компьютере.
Если на время выполнения программы также влияет «качество» информации, мы будем определять T(n) как время выполнения в наихудшем случае, т.е. как максимум времени выполнения по всем входным данным размера n. Почему? Вот несколько причин.
-
Зная время работы в худшем случае, мы можем гарантировать, что выполнение алгоритма закончится за некоторое время, даже не зная какие данные попадутся на вход.
-
На практике «плохие» входные данные (для которых время выполнения алгоритма близко к максимальному) могут часто попадаться. Например, для базы данных плохим запросом может быть поиск отсутствующего элемента (довольно частая ситуация).
Также существует понятие: среднее время выполнения по всем входным данным размера n, в статистическом смысле. На практике среднее время выполнения найти сложнее, чем наихудшее время выполнения, так как математически это трудноразрешимая задача и, кроме того, зачастую трудно определить какие входные данные являются «средними». Поэтому среднее время выполнения программы определяется для тех алгоритмов, где это возможно.
Теперь сделаем замечание о втором и третьем факторах, влияющих на время выполнения программ: о компиляторе, используемом для компиляции программы, и машине, на которой выполняется программа. Эти факторы влияют на то, что для измерения времени выполнения мы не можем применить стандартные единицы измерения, такие как секунды или миллисекунды. Поэтому мы можем только делать заключения, подобные следующему: «время выполнения такого-то алгоритма пропорционально n2». Константы пропорциональности также нельзя точно определить, поскольку они зависят от компилятора, компьютера и др. факторов.