
- •1. Элементы, входящие в систему передачи и распределения электроэнергии
- •26.Проверка сечения проводов и кабелей по условиям допустимого нагрева
- •2.Виды системной автоматики, применяемые в электропередачах
- •27.Регулирование частоты в электроэнергетической системе
- •3.Условная схема системы передачи и распределения электроэнергии
- •28.Определение сечения проводов и кабелей по экономической плотности тока
- •4.Преимущества и недостатки передачи электроэнергии постоянным током
- •29.Падение и потеря напряжения в лэп
- •5.Понятие о пропускной способности электропередачи
- •30.Выбор номинального напряжения сети
- •6.Преимущества и недостатки кабельных линий по сравнению с воздушными
- •31.Использование в качестве компенсирующих устройств батарей конденсаторов
- •7.Транспозиция проводов
- •32.Определение сечений проводников электрической сети по допустимой потере напряжения
- •8.Опоры воздушных линий. Назначение и конструкции
- •33.Технико-экономические расчеты электрических сетей. Основные понятия
- •9.Провода воздушных линий. Назначение и конструктивные особенности
- •34.Схемы замещения линии трехфазного тока с нагрузкой на конце
- •10.Типы изоляторов на воздушных линиях
- •35.Определение потери напряжения. Расчетные формулы
- •11.Кабели. Конструкция, назначение, маркировка
- •36.Схема замещения трансформатора
- •12.Конструктивные отличия кабеля 10 кВ и по кВ
- •37.Поторя электроэнергии в линиях и трансформаторах
- •13.Схемы замещения линий электропередач
- •38.Компенсация реактивной мощности. Векторная диаграмма
- •14.Грозозащитные тросы
- •39.Выбор мощности компенсирующих устройств. Расчетные формулы
- •15.Самонесущие изолированные провода
- •40.Блочная схема передачи электроэнергии
- •16.Связная схема передачи электроэнергии
- •41.Продольная компенсация индуктивности лэп
- •17.Принципиальная схема компенсированной электропередачи
- •42.Номинальные напряжения электрических сетей и приемников электрической энергии
- •18.Активное сопротивление линий
- •43.Синхронные компенсаторы
- •19.Индуктивное сопротивление линий
- •44.Способы регулирования напряжения в электрической сети
- •20.Реактивная проводимость и зарядная мощность лэп
- •45.Критическая длина пролета
- •21.Расчет лэп по п-образной схеме замещения, с нагрузкой, выраженной мощностью
- •46.Схема замещения трехобмоточного трансформатора
- •22.Схема замещения автотрансформатора
- •47.Расщепление фаз воздушной линии, назначение
- •23.Линейная арматура воздушных лэп
- •48.Распределение электроприемников на категории по обеспечению надежности электроснабжения
- •24.Режимы работы нейтрали электрических сетей
- •49.Расчет на механическую прочность лэп
- •25.Режим работы сети с компенсированной нейтралью
- •50. Основы расчета опор и их оснований
18.Активное сопротивление линий
Активное сопротивление линии – сопротивление проводника переменному току.
По своей величине активное сопротивление больше сопротивления постоянного тока, это вызвано частотой, и как следствие появление поверхностного эффекта. Это приводит к тому, что ток как бы перемещается от центра к поверхности. Это возникает благодаря противо ЭДС, которое создается переменным током, в результате ток в центральной части значительно меньше, чем у поверхности. Сечение провода используется не полностью. Поэтому сопротивление по отношению к омическому выше. Этот эффект резко проявляется при токах большой частоты, а также в стальных проводах.
Для линий выполненных из цветных металлов появление поверхностного эффекта незначительно, при расчетах активное сопротивление приравнивается омическому. Также не учитывается сопротивление проводников в зависимости от температуры. Считаем сопротивление при +20С.
Активное сопротивление, как правило, определяется через значение погонных 1 км провода R=r0l, r0 – сопротивление одного км провода, l-длина. Эти данные даются в справочниках.
Активное сопротивление стального провода значительно больше омического сопротивления. Стоит учитывать потери на вихревые токи и перемагничивание в стали, которые зависят от сечения. Для практических расчетов можно использовать справочные данные, однако это необходимо учитывать при больших токах нагрузки. Эти явления проявляются меньше в многопроволочных проводниках.
43.Синхронные компенсаторы
Синхронный компенсатор (СК) — это синхронная машина, работающая в двигательном режиме без нагрузки на валу при изменяющемся токе возбуждения. В перевозбужденном режиме ЭДС обмотки статора Ек1 больше напряжения сети UK (рис. 2.25). Под действием разности напряжений ΔU=EK1- UK в статоре СК возникает ток IK1,отстающий от вектора ΔU1 на 90°. Компенсатор в этом режиме отдает реактивную мощность в сеть. В недовозбужденном режиме EK2< UK, в статоре СК возникает ток IK2, опережающий вектор ΔU2 на 90°, т.е. СК будет потреблять реактивную мощность из сети. Синхронные компенсаторы не несут активной нагрузки на валу, поэтому их конструкция облегчена. Компенсаторы выполняются тихоходными (750—1000 об/мин) с горизонтальным валом и явнополюсным ротором.
Синхронный компенсатор характеризуется номинальной мощностью, напряжением, током статора, частотой и номинальным током ротора. Шкала мощностей определяется по ГОСТ 609—84. Номинальное напряжение синхронного компенсатора на 5 —10 % выше номинального напряжения сети.
В зависимости от тока возбуждения синхронный компенсатор может работать в режимах перевозбуждения и недовозбуждения, генерировать или потреблять реактивную мощность. Регулирование тока возбуждения осуществляется специальными схемами АРВ.
При пуске выключатель Q1 отключен, Q2 включен. Разворот компенсатора происходит за счет асинхронного момента. Когда частота вращения приблизится к синхронной, подается возбуждение и компенсатор втягивается в синхронизм. Регулируя ток возбуждения, устанавливают минимальный ток статора и включают выключатель Q1, шунтируя реактор и включая СК в сеть.
Синхронные генераторы могут работать в режиме синхронного компенсатора, если закрыть доступ пара (или воды) в турбину. В таком режиме перевозбужденный турбогенератор начинает потреблять небольшую активную мощность из сети и отдает реактивную мощность в сеть.
Перевод гидрогенераторов в режим синхронных компенсаторов производится без остановки агрегатов, достаточно освободить камеру гидротурбины от воды.
СК устанавливается на крупных ПС с номинальным напряжением 220кВ и выше и присоединяется к обмотке НН АТ.
Достоинства:
-
Плавное регулирование реактивной мощности
-
Возможность увеличения, выдаваемой реактивной мощности при понижении напряжения
-
Широкий диапазон регулирования т.е. возможность как выдачи, так и потребления реактивной мощности
Недостатки:
-
Высокая стоимость и эксплуатационные расходы
-
Повышение потерь мощности