
- •1. Элементы, входящие в систему передачи и распределения электроэнергии
- •26.Проверка сечения проводов и кабелей по условиям допустимого нагрева
- •2.Виды системной автоматики, применяемые в электропередачах
- •27.Регулирование частоты в электроэнергетической системе
- •3.Условная схема системы передачи и распределения электроэнергии
- •28.Определение сечения проводов и кабелей по экономической плотности тока
- •4.Преимущества и недостатки передачи электроэнергии постоянным током
- •29.Падение и потеря напряжения в лэп
- •5.Понятие о пропускной способности электропередачи
- •30.Выбор номинального напряжения сети
- •6.Преимущества и недостатки кабельных линий по сравнению с воздушными
- •31.Использование в качестве компенсирующих устройств батарей конденсаторов
- •7.Транспозиция проводов
- •32.Определение сечений проводников электрической сети по допустимой потере напряжения
- •8.Опоры воздушных линий. Назначение и конструкции
- •33.Технико-экономические расчеты электрических сетей. Основные понятия
- •9.Провода воздушных линий. Назначение и конструктивные особенности
- •34.Схемы замещения линии трехфазного тока с нагрузкой на конце
- •10.Типы изоляторов на воздушных линиях
- •35.Определение потери напряжения. Расчетные формулы
- •11.Кабели. Конструкция, назначение, маркировка
- •36.Схема замещения трансформатора
- •12.Конструктивные отличия кабеля 10 кВ и по кВ
- •37.Поторя электроэнергии в линиях и трансформаторах
- •13.Схемы замещения линий электропередач
- •38.Компенсация реактивной мощности. Векторная диаграмма
- •14.Грозозащитные тросы
- •39.Выбор мощности компенсирующих устройств. Расчетные формулы
- •15.Самонесущие изолированные провода
- •40.Блочная схема передачи электроэнергии
- •16.Связная схема передачи электроэнергии
- •41.Продольная компенсация индуктивности лэп
- •17.Принципиальная схема компенсированной электропередачи
- •42.Номинальные напряжения электрических сетей и приемников электрической энергии
- •18.Активное сопротивление линий
- •43.Синхронные компенсаторы
- •19.Индуктивное сопротивление линий
- •44.Способы регулирования напряжения в электрической сети
- •20.Реактивная проводимость и зарядная мощность лэп
- •45.Критическая длина пролета
- •21.Расчет лэп по п-образной схеме замещения, с нагрузкой, выраженной мощностью
- •46.Схема замещения трехобмоточного трансформатора
- •22.Схема замещения автотрансформатора
- •47.Расщепление фаз воздушной линии, назначение
- •23.Линейная арматура воздушных лэп
- •48.Распределение электроприемников на категории по обеспечению надежности электроснабжения
- •24.Режимы работы нейтрали электрических сетей
- •49.Расчет на механическую прочность лэп
- •25.Режим работы сети с компенсированной нейтралью
- •50. Основы расчета опор и их оснований
40.Блочная схема передачи электроэнергии
Сетевые или подстанции промышленных предприятий глубокого ввода напряжением 110—220 кВ строятся преимущественно двухтрансформаторными (подстанции с одним трансформатором, как правило, эксплуатируются временно). Типичная схема подстанции 110—220 кВ — это блоки линия —трансформатор с глубоким секционированием на приемной подстанции. Представленная на рис. 12-2 блочная схема подстанции применяется при тупиковом питании потребителей электрической энергии непосредственно с шин высокого напряжения электростанций или районной подстанции, либо от двух параллельных линий 110—220 кВ проходящих в зоне сооружения подстанции. Присоединение подстанций к питающим линиям в этом случае производится глухими ответвлениями (т. е. без выключателей в месте присоединения), а подстанции носят название ответвительных. Распространенной также является схема с присоединением одного из трансформаторов глухим ответвлением к ближайшей одиночной линии высоковольтной сети системы, а второго — к тупиковой линии передачи, прокладываемой на подстанцию непосредственно от источника электроснабжения. Питание подстанций, сооружаемых по схеме рис. 12-2, от двух различных источников электроснабжения не допускается. При любой схеме питания трансформаторы подстанций присоединяются к сети через линейный разъединитель 1 и отделитель 2 (рис. 12-2). Для защиты трансформатора установлен однофазный короткозамыкатель 3. При повреждении трансформатора вступает в действие релейная защита, автоматически включающая короткозамыкатель, чем создается однофазное короткое замыкание на линии. Линия отключается со стороны источника питания на время, достаточное для автоматического отключения отделителем поврежденного трансформатора. Вслед за этим АПВ (однократное или двукратное) снова включает питающую линию, обеспечивая электроснабжение остальных присоединенных к ней потребителей. Разъединители 1 и 5 обеспечивают ремонт и испытание коммутационной аппаратуры при работе одного из трансформаторов.
Наличие перемычки аb со стороны трансформаторов с отделителем двустороннего действия 4 обеспечивает автоматическое восстановление питания трансформатора после аварийного отключения его линии. Включение трансформатора отделителем 4 (разъединитель 5 замкнут) происходит во время бестоковой паузы блока после отключения поврежденной линии от источника питания ИП (порядок действия автоматики здесь не рассматривается).
Блочная схема передачи электрической энергии
16.Связная схема передачи электроэнергии
Связ-ая сх. предусм. объедин. //-х цепей на промеж-х п/ст, предназ-х для связи с промеж. эл. системами. По дальной передаче со связ. сх. можно перед. не только Р2 в приемн. ЭС, но и Р3 промеж. п/ст. Промеж. п/ст делят ЛЭП на участки, что способствует увел-ю пропускной способности эл перед., т.к. при поврежд. Участка участка откл-ся только цепи этого участка, а не вся линия. Кроме того присоед-е пром-х эн систем в опр-ой мере стабилизирует напряж-е на п/ст, что явл-ся косвенной мерой увел-я передав-ой по линии мощности.
Пропускная способность 2х цепных ЛЭП 800-1000 км повышается путем сооруж-я на ней промеж-х п/ст.
Связанная схема передачи электрической энергии