- •1.Производная функции. Ее физический и геометрический смысл.
- •2.Описание скорости протекания биологических процессов с помощью производной. Градиенты.
- •3.Производные высших порядков. Частные производные.
- •4.Применение производных для исследования функций на экстремум.
- •5.Дифференциал функции, его геометрический и физический смысл.
- •7.Состояние организма как функция многих переменных. Приближенные значения.
- •8.Нахождение частных производных и полного дифференциала.
- •9.Первообразная функции и неопределенный интеграл. Интегрирование.
- •10.Методы нахождения неопределенных интегралов: Приведение к табличному виду и метод замены переменной (интегрирование по частям).
- •Используя формулу (1), получаем
- •11.Определенный интеграл, его применение для вычисления площадей фигур и работы переменной силы.
- •12.Вычисление определенных интегралов, правило Ньютона – Лейбница.
- •14.Дифференциальные уравнения. Простейшие приемы составления и решения дифференциальных уравнений.
- •15.Понятие об обыкновенных дифференциальных уравнениях. Решение дифференциальных уравнений с разделяющимися переменными.
- •16.Решение дифференциальных уравнений. Общие и частные решения.
- •18.Вероятностный характер медико – биологических процессов. Элементы теории вероятностей.
- •19.Вероятность случайного события. Закон сложения вероятностей.
- •20.Вероятность случайного события. Закон умножения вероятностей.
- •22.Элементы математической статистики. Случайная величина.
- •23. Распределение дискретных и непрерывных случайных величин и их характеристики: математическое ожидание, дисперсия, среднее квадратичное отклонение. (часть 1)
- •23. Распределение дискретных и непрерывных случайных величин и их характеристики: математическое ожидание, дисперсия, среднее квадратичное отклонение. (часть2).
- •24.Примеры различных законов распределения. Нормальный закон распределения.(часть 1).
- •24.Примеры различных законов распределения. Нормальный закон распределения.(часть 2)
- •24.Примеры различных законов распределения. Нормальный закон распределения.(часть 3)
- •25. Генеральная совокупность и выборка. Гистограмма.
- •30.Понятие о корреляционном анализе.
- •31.Упругие, вязкие и вязкоупругие среды, их механические характеристики и модели.
- •32.Механические свойства костной ткани, мыщц, сухожилий и сосудов.
- •33.Механические колебания: гармонические.
- •Дифференциальное уравнение гармонического колебания.
- •34. Механические колебания: затухающие (часть 1).
- •34. Механические колебания: затухающие.(часть 2)
- •35.Механические колебания: вынужденные.
- •36.Резонанс. Автоколебания.
- •37. Энергия гармонических колебаний.
- •38.Разложение колебаний в гармонический спектр. Применение гармонического анализа для обработки диагностических данных. (часть1).
- •38.Разложение колебаний в гармонический спектр. Применение гармонического анализа для обработки диагностических данных.(часть 2).
- •Сложение взаимно-перпендикулярных колебаний.
- •39. Механические волны, их виды и скорость распространения. Уравнение волны. Энергетические характеристики волны. (часть1).
- •Уравнение волны.
- •39. Механические волны, их виды и скорость распространения. Уравнение волны. Энергетические характеристики волны.(часть 2)
- •40.Эффект Доплера и его применение для неинвазивного измерения скорости кровотока.
- •41.Акустика.Физические характеристики звука..Характеристика слухового ощущения и их связь с физическими характеристиками звука.
- •42.Вебера-Фехнера. Уровни интенсивности и уровни громкости звука. Единицы их измерения - децибелы и фоны.
- •43.Аудиометрия. Фонокардиогра фия.
- •44. Поглощение и отражение акустических волн. Акустический импеданс.
- •45. Ультразвук. Методы получения и регистрации. Действие ультразвука на вещество.
- •46. Биофизические основы действия ультразвука на клетки и ткани организма.
- •47. Ультразвуковая диагностика. Принципы ультразвуковой томографии.
- •48. Инфразвук. Биофизические основы действия инфразвука на биологические объекты.
- •49. Сущность физического явления поверхностного натяжения. Коэффициент поверхностного натяжения и методы его определения.
- •50. Капиллярные явления, их значение в биологических системах. Газовая эмболия.
- •51. Основные понятия гидродинамики. Условие неразрывности струи. Уравнение Бернулли.
- •1. Схема трубки тока жидкости для вывода формулы Бернулли.
- •1)Наклонная трубка тока постоянного сечения.
- •2)Горизонтальная трубка тока переменного сечения.
- •52. Внутреннее трение (вязкость) жидкости. Ньютоновские и неньютоновские жидкости Реологические свойства крови, плазмы, сыворотки. Факторы, влияющие на вязкость крови в живом организме.
- •53. Течение вязкой жидкости. Формула Пуазейля.
- •54. Гидравлическое сопротивление. Распределение давления и скорости крови в сосудистой системе.
- •55. Применение уравнения Бернулли для исследования кровотока в крупных артериях и аорте (закупорка артерии, артериальный шум, поведение аневризмы).
- •5) Разрыв аневризмы.
- •56. Распределение скорости кровотока и кровяного давления в большом круге кровообращения. Особенности течения крови по крупным и мелким кровеносным сосудам.
- •57. Методы определения давления и скорости крови. Физичес кие принципы определения давления и скорости движения крови.
- •58. Ламинарное и турбулентное течение. Число Рейнольдса. Условия проявления турбулентности в системе кровообращения.
- •59. Роль эластичности кровеносных сосудов в системе кровообращения. Пульсовая волна. Скорость распространения пульсовой волны.
- •9.2. Пульсовая волна
- •60. Работа и мощность сердца, их количественная оценка.
- •61. Методы определения вязкости: Стокса, Оствальда, ротационный метод.
- •2.Метод падающего шарика (метод Стокса).
- •62. Устройство вискозиметра Оствальда. Определение с его помощью вязкости исследуемой жидкости.
- •63. Физические вопросы строения и функционирования мембран. Транспорт веществ через мембраны.
- •64. Пассивный транспорт. Простая и облегченная диффузия. Математическое описание пассивного транспорта.
- •65. Активный транспорт ионов. Механизм активного транспорта на примере натрий-калиевого насоса.
- •66. Мембранные потенциалы и их ионная природа. Потенциал покоя.
- •67. Мембранные потенциалы и их ионная природа. Уравнение Нернста. Уравнение Гольдмана-Ходжкина-Катца.
- •68. Механизм генерации потенциала действия. Распространение потенциала действия по миелиновым и безмиелиновым нервным волокнам.
- •69. Общие характеристики датчиков температуры. Зависимость сопротивления металлов и полупроводников от температуры.
- •70. Контактная разность потенциалов. Градуировка термопары, термистора и проволочного терморезистора.
- •71. Усилители. Коэффициент усиления усилителя. Требования к усилителям. Многокаскадное усиление. Классификация усилителей.
- •72. Амплитудная характеристика усилителя. Амплитудные искажения. Предупреждение амплитудных искажений.
- •73. Частотная характеристика усилителя. Частотные искажения. Полоса пропускания усилителя. Предупреждение частотных искажений.
- •74. Усилительный каскад на транзисторе. Обратная связь в усилителях. Виды обратной связи.
- •75. Повторители. Назначение и типы повторителей.Дифференциальный усилитель.
- •75. Повторители. Назначение и типы повторителей.Дифференциальный усилитель.
- •77. Первичные механизмы воздействия электростатических полей на биологические объекты. Применение постоянных электрических полей в физиотерапии.
- •78. Физические основы электрографии тканей и органов. Электрокардиография. Диполь ный эквивалентный электрический генератор сердца. Теория отведений Эйнтховена.
- •79. Понятие о мультипольном эквивалентном электрическом генераторе сердца. Электрокардиограф.
- •80. Электропроводность биологических тканей и жидкостей для постоянного тока.
- •81. Первичные механизмы действия постоянного тока на жи вую ткань. Гальванизация. Лечебный электрофорез.
- •82. Переменный ток. Различные виды электрических сопротивлений в цепи переменного тока. Импеданс.
- •83. Сопротивление живой ткани переменному току, его зависимость от частоты тока.
- •14.2. Переменный ток
- •84. Эквивалентная электрическая схема живой ткани. Электрические фильтры.
- •85.Основные характеристики магнитного поля. Магнитные свойства веществ. Магнитные свойства биологических тканей.
- •86.Первичные механизмы воздействия магнитных полей на организм. Терапевтическое использование магнитных полей. Аппарат терапии переменным магнитным полем
- •87.Электростимуляция тканей и органов. Параметры импульсного сигнала и их физиологическое значение.
- •88. Связь амплитуды, формы импульса, частоты следования импульсов, длительности импульсного сигнала с раздражающим действием импульсного тока. Закон Дюбуа-Реймона.
- •89. Связь амплитуды, формы импульса, частоты следования импульсов, длительности импульсного сигнала с раздражающим действием импульсного тока. Уравнение Вейса-Лапика.
- •90.Аппаратура для электростимуляции. Примеры использования электростимуляции в клинике. Электростимуляция сердца и ее виды.
- •91.Воздействие переменными токами.
- •92. К физиотерапевтическим аппаратам высокочастотной терапии относятся аппараты электрохирургии, диатермии, местной дарсонвализации, индуктотермии, увч-терапии, микроволновой терапии.
- •Аппарат электрохирургии высокочастотный
- •Терапевтический контур
- •1. Явление рефракции
- •2. Отражение и преломление света.
- •3.Понятие о предельном угле падения и предельном угле преломления
- •4.Удельная рефракция вещества
- •5.Молекулярная рефракция вещества
- •94.Устройство и принцип действия рефрактометра.
- •95. Волоконная оптика и ее использование в оптических устройствах
- •96. Ход лучей в микроскопе. Увеличение и предел разрешения оптических микроскопов.
- •1. Микроскоп. Формула для увеличения
- •97. Формула Аббе. Значение апертурного угла. Ультрафиолетовый микроскоп. Иммерсионные системы. Полезное увеличение. Специальные приемы микроскопии.
- •98. Основы электронной микроскопии.
- •100. Тепловое излучение тел. Законы Кирхгофа.
- •101. Тепловое излучение тел. Стефана-Больцмана.
- •102. Тепловое излучение тел. Вина.
- •103. Тепловое излучение тел. Формула Планка.
- •104. Законы теплового излучения, область их применения. Использование тепловидения и термографии в медицине.
- •105. Электромагнитные волны, шкала электромагнитных волн. Интерференция света.
- •Вся шкала условно подразделена на шесть диапазонов: радиоволны (длинные, средние и короткие), инфракрасные, видимые, ультрафиолетовые, рентгеновские волны и гамма-излучение.
- •106. Электромагнитные волны, шкала электромагнитных волн. Дифракция света.
- •Вся шкала условно подразделена на шесть диапазонов: радиоволны (длинные, средние и короткие), инфракрасные, видимые, ультрафиолетовые, рентгеновские волны и гамма-излучение.
- •107. Интерференционные и дифракционные прибо ры. Принцип рентгеноструктурного анализа.
- •108. Понятие о голографии.
- •109. Поляризация света. Поляризационные методы исследования биологи ческих объектов.
- •110. Поляриметрия и спектрополяриметрия. Поляризационные приборы.
- •111. Излучение и поглощение энергии атомами. Структура энергети ческих уровней атомов. Оптические спектры атома водорода и спектры сложных атомов.
- •112. Структура энергетических уровней сложных молекул. Молекулярные спектры.
- •113. Эмиссионный и абсорбционный спектральный анализ, его медицинс кое применение.
- •114. Спектроскопы, спектрографы, монохроматоры, спектро фотометры и их применение в медицине.
- •115. Люминесценция, ее виды. Характеристики люминесценции (спектр, длительность, квантовый выход). Законы Вавилова и Стокса.
- •116. Люминесцентный анализ. Люминесцентные метки и зонды. Медицинское применение люминесцентных методов исследования.
- •117. Поглощение света и его законы. Показатель поглощения, коэффи циент пропускания, оптическая плотность.
- •118. Регистрация спектров поглоще ния биологических объектов. Фотоколориметрия и спектрофотометрия.
- •119. Рассеяние света. Нефелометрия.
- •120. Вынужденное излучение, его особенности. Условия усиления света.
- •121. Оптические квантовые генераторы (лазеры). Характеристики лазерного излучения.
- •122. Воздействие низкоинтенсивного и высокоинтенсивного лазерного излучения на биологические ткани. Физические основы лазерной терапии и хирургии.
- •123. Электронный парамагнитный резонанс (эпр). Идентификация и определение концентрации свободных радикалов методами эпр.
- •124. Ядерный магнитный резонанс (ямр). Принципы и диагностические возможности магнито-резонансной томографии (мрт).
- •125. Рентгеновское излучение, его природа. Тормозное рентгеновское излучение.
- •126. Рентгеновское излучение, его природа. Характерис тическое рентгеновское излучение.
- •127. Взаимодействие рентгеновского излучения с веществом. Слой половинного ослабления. Защита от рентгеновского излучения.
- •128. Физические принципы рентгенодиагностики и рент генотерапии. Понятие о рентгеновской компьютерной томографии.
- •129. Основные характеристики ядер атомов. Радиоактивный распад. Виды распада.
- •130. Спектры альфа-, бета- и гам ма-излучений. Основной закон радиоактивного распада.
- •131. Период полураспада. Активность и единицы активности. Методы получения радионуклидов.
- •132. Взаимодействие ионизирующего излучения с веществом. Линейная плотность ионизации, линейная передача энергии, средний пробег ионизирующей частицы.
- •Величина лпэ в кэВ/мкм зависит от плотности вещества.
- •133. Особенности взаимодействия с веществом альфа-, бета-, гамма-излучений и нейтронов.
- •134. Физические принципы защиты от ионизирующих из лучений. Понятие об основных биологических эффектах ионизирующих из лучений.
- •135. Физические основы радионуклидных методов диагностики и лучевой терапии.
- •135/1. Использование радионуклидов и нейтронов в медицине
- •136. Дозиметрия ионизирующего излучения. Поглощенная, экспозицион ная и эквивалентная дозы. Единицы их измерения.
- •137. Мощность дозы. Связь мощности дозы с активностью. Эффективная эквивалентная доза. Коллек тивная доза.
- •138. Связь между активностью и эквивалентной дозой внутреннего облу чения. Принципы расчета эквивалентной дозы внутреннего облучения.
- •139. Методы регистрации ионизирующих излучений, дозиметрические и радио метрические приборы. Естественный радиационный фон. Техногенный фон.
- •139/1. Методы регистрации излучений. Приборы. Естеств. И техног. Радиац. Фон
44. Поглощение и отражение акустических волн. Акустический импеданс.
Звуковое давление р зависит от скорости и колеблющихся частиц среды. Вычисления показывают, что
или
где — плотность среды, с — скорость звуковой волны в среде. Произведение с называют удельным акустическим импедансом, для плоской волны его называют также волновым сопротивлением.
Волновое сопротивление — важнейшая характеристика среды, определяющая условия отражения и преломления волн на ее границе.
Представим себе, что звуковая волна попадает на границу раздела двух сред. Часть волны отражается, а часть — преломляется. Законы отражения и преломления звуковой волны аналогичны законам отражения и преломления света. Преломленная волна может поглотиться во второй среде, а может выйти из нее.
Допустим, что плоская волна падает нормально к границе раздела, интенсивность ее в первой среде I1 интенсивность преломленной (прошедшей) волны во второй среде I2. Назовем
коэффициентом проникновения звуковой волны.
Рэлей показал, что коэффициент проникновения звука определяется формулой
что наибольшее значение, которое может иметь , равно 1. = 1, если c11 = c22
Итак, при равенстве волновых сопротивлений двух сред звуковая волна (при нормальном падении) пройдет границу раздела без отражения.
Если волновое сопротивление второй среды весьма велико по сравнению с волновым сопротивлением первой среды (c22 >> c11), то имеем
Во всяком закрытом помещении отраженный от стен, потолков, мебели звук падает на другие стены, полы и пр., вновь отражается и поглощается и постепенно угасает. Поэтому даже после того, как источник звука прекратит действие, в помещении все еще имеются звуковые волны, которые создают гул. Особенно это заметно в больших просторных залах. Процесс постепенного затухания звука в закрытых помещениях после выключения источника называют реверберацией.
Реверберация, с одной стороны, полезна, так как восприятие звука усиливается за счет энергии отраженной волны, но, с другой стороны, чрезмерно длительная реверберация может существенно ухудшить восприятие речи, музыки, так как каждая новая часть текста перекрывается предыдущими. В связи с этим обычно указывают некоторое оптимальное время реверберации, которое учитывается при постройке аудиторий, театральных и концертных залов и т. п.
45. Ультразвук. Методы получения и регистрации. Действие ультразвука на вещество.
Ультразвуком (УЗ) называют механические колебания и волны с частотами более 20 кГц. Для генерирования УЗ используются устройства, называемые УЗ-излучателями. Наибольшее распространение получили электромеханические излучатели, основанные на явлении обратного пьезоэлектрического эффекта. Обратный пьезоэффект заключается в механической деформации тел под действием электрического поля. Основной частью такого излучателя является пластина или стержень 1 из вещества с хорошо выраженными пьезоэлектрическими свойствами (кварц, сегнетова соль, керамический материал на основе титаната бария и др.). На поверхность пластины в виде проводящих слоев нанесены электроды 2. Если к электродам приложить переменное электрическое напряжение от генератора 3, то пластина благодаря обратному пьезоэффекту начнет вибрировать, излучая механическую волну соответствующей частоты.
Наибольший эффект излучения механической волны возникает при выполнении условия резонанса. Приемник УЗ можно создать на основе пьезоэлектрического эффекта (прямой пьезоэффект). В этом случае под действием механической волны (УЗ-волны) возникает деформация кристалла,которая приводит при пьезоэффекте к генерации переменного электрического поля; соответствующее электрическое напряжение может быть измерено. Применение УЗ в медицине связано с особенностями его распространения и характерными свойствами. По физической природе УЗ, как и звук, является механической (упругой) волной.Однако длина волны УЗ существенно меньше длины звуковой волны. Отражение УЗ на границе двух сред зависит от соотношения их волновых сопротивлении. Так, УЗ хорошо отражается на границах мышца — надкостница — кость, на поверхности полых органов и т. д. Поэтому можно определить расположение и размер неоднородных включений, полостей, внутренних органов и т. п. (УЗ-локация). При УЗ-локации используют как непрерывное, так и импульсное излучения. В первом случае исследуется стоячая волна, возникающая при интерференции падающей и отраженной волн от границы раздела. Во втором случае наблюдают отраженный импульс и измеряют время распространения ультразвука до исследуемого объекта и обратно. Зная скорость распространения ультразвука, определяют глубину залегания объекта.
Волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха. Поэтому если УЗ-излучатель приложить к телу человека, то УЗ не проникнет внутрь, а будет отражаться из-за наличия тонкого слоя воздуха между излучателем и биологическим объектом. Чтобы исключить воздушный слой, поверхность УЗ-излучателя покрывают слоем масла.
Сжатия и разрежения, создаваемые ультразвуком, приводят к образованию разрывов сплошности жидкости — кавитаций.
Кавитации существуют недолго и быстро захлопываются, при этом в небольших объемах выделяется значительная энергия, происходит разогревание вещества, а также ионизация и диссоциация молекул.
Физические процессы, обусловленные воздействием УЗ, вызывают в биологических объектах следующие основные эффекты:
- микровибрации на клеточном и субклеточном уровне;
- разрушение биомакромолекул;
- перестройку и повреждение биологических мембран, изменение проницаемости мембран
- тепловое действие;
- разрушение клеток и микроорганизмов.
Медико-биологические приложения ультразвука можно в основном разделить на два направления: методы, диагностики и исследования и методы воздействия
К первому направлению относятся локационные методы с использованием главным образом импульсного излучения. Это эх-энцефалография — определение опухолей и отека головного мозга,ультразвуковая кардиография — измерение размеров сердца в динамике; в офтальмологии — ультразвуковая локация для определения размеров глазных сред. С помощью ультразвукового эффекта Доплера изучают характер движения сердечных клапанов и измеряют скорость кровотока. С диагностической целью по скорости ультразвука находят плотность сросшейся или поврежденной кости.
Ко второму направлению относится ультразвуковая физиотерапия
Обычно для терапевтических целей применяют ультразвук частотой 800 кГц, средняя его интенсивность около 1 Вт/см2 и меньше.
Первичными механизмами ультразвуковой терапии являются механическое и тепловое действия на ткань.
При операциях ультразвук применяют как «ультразвуковой скальпель», способный рассекать и мягкие, и костные ткани.
Способность ультразвука дробить тела, помещенные в жидкость, и создавать эмульсии используется в фармацевтической промышленности при изготовлении лекарств. При лечении таких заболеваний, как туберкулез, бронхиальная астма, катар верхних дыхательных путей, применяют аэрозоли различных лекарственных веществ, полученные с помощью ультразвука.
В настоящее время разработан новый метод «сваривания» поврежденных или трансплантируемых костных тканей с помощью ультразвука (ультразвуковой остеосинтез).
Губительное воздействие ультразвука на микроорганизмы используется для стерилизации.