- •Теория вероятностей
- •§2.1. Случайное событие. Вероятность
- •§ 2.2. Случайная величина. Закон распределения. Числовые характеристики
- •§ 2.3. Нормальный закон распределения
- •§ 2.4. Распределения Максвелла и Больцмана
- •Лекция 2.
- •Математическая статистика
- •§3.1. Основные понятия математической статистики
- •§ 3.2. Оценка параметров генеральной совокупности по ее выборке
- •§3.3. Проверка гипотез
- •§ 3.4. Корреляционная зависимость. Уравнения регрессии
- •Лекция 3.
- •Механические колебания и волны.
- •5.1. Свободные механические колебания (незатухающие и затухающие)
- •5.2. Кинетическая и потенциальная энергии колебательного движения
- •5.3. Сложение гармонических колебаний
- •5.4. Сложное колебание и его гармонический спектр
- •5.5. Вынужденные колебания. Резонанс
- •5.6. Автоколебания
- •5.7. Уравнение механической волны
- •5.8. Поток энергии и интенсивность волны
- •5.9. Ударные волны
- •5.10. Эффект Доплера
- •Лекция 4
- •Акустика
- •6.1. Природа звука и его физические характеристики
- •§ 6.2. Характеристики слухового ощущения. Понятие об аудиометрии.
- •§ 6.3. Физические основы звуковых методов исследования в клинике
- •§ 6.4. Волновое сопротивление. Отражение звуковых волн. Реверберация
- •§ 6.5. Физика слуха
- •6.6. Ультразвук и его применения в медицине
- •6.7. Инфразвук
- •6.8. Вибрации
- •Лекция 5
- •Течение и свойства жидкостей
- •Уравнение Бернулли.
- •1. Схема трубки тока жидкости для вывода формулы Бернулли.
- •1)Наклонная трубка тока постоянного сечения.
- •2)Горизонтальная трубка тока переменного сечения.
- •3) Измерение скорости жидкости. Трубка Пито.
- •7.1. Вязкость жидкости. Уравнение Ньютона. Ньютоновские и неньютоновские жидкости
- •7.2. Течение вязкой жидкости по трубам. Формула Пуазейля
- •Факторы, влияющие на вязкость крови в организме.
- •9.1. Модели кровообращения
- •Лекция 6
- •7.5. Турбулентное течение. Число Рейнольдса
- •9.1. Модели кровообращения
- •9.2. Пульсовая волна
- •9.3. Работа и мощность сердца. Аппарат искусственного кровообращения
- •Лекция 7.
- •Физические процессы в биологических мембранах
- •11.1. Строение и модели мембран
- •11.2. Некоторые физические свойства и параметры мембран
- •11.3. Перенос молекул (атомов) через мембраны. Уравнение Фика
- •11.4. Уравнение Нернста—Планка. Перенос ионов через мембраны
- •11.5. Разновидности пассивного переноса молекул и ионов через мембраны
- •11.6. Активный транспорт. Опыт Уссинга
- •Лекция 8.
- •11.7. Равновесный и стационарный мембранные потенциалы. Потенциал покоя
- •11.8. Потенциал действия и его распространение
- •11.9. Активно-возбудимые среды. Автоволновые процессы в сердечной мышце
- •Лекция 9.
- •Электрическое поле
- •12.1. Напряженность и потенциал — характеристики электрического поля
- •12.2. Электрический диполь
- •12.3. Понятие о мультиполе
- •12.4. Дипольный электрический генератор (токовый диполь)
- •12.5. Физические основы электрокардиографии
- •12.6. Диэлектрики в электрическом поле
- •12.7. Пьезоэлектрический эффект
- •12.8. Энергия электрического поля
- •12.11. Электрический разряд в газах. Аэроионы и их лечебно-профилактическое действие
- •Лекция 10.
- •12.9. Электропроводимость электролитов
- •12.10. Электропроводимость биологических тканей и жидкостей при постоянном токе
- •15.1. Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
- •14.2. Переменный ток
- •14.3. Полное сопротивление в цепи переменного тока. Резонанс напряжений
- •14.4. Импеданс тканей организма. Дисперсия импеданса. Физические основы реографии
- •Магнитное поле
- •13.1. Основные характеристики магнитного поля
- •13.2. Закон Ампера
- •13.3. Действие магнитного поля на движущийся электрический заряд. Сила Лоренца
- •13.4. Магнитные свойства вещества
- •13.5. Магнитные свойства тканей организма. Понятие о биомагнетизме и магнитобиологии
Лекция 2.
Элементы математической статистики. Случайная величина. Распределение дискретных и непрерывных случайных величин и их характеристики: математическое ожидание, дисперсия, среднее квадратичное отклонение. Примеры различных законов распределения. Нормальный закон распределения.
Генеральная совокупность и выборка. Гистограмма. Оценка параметров нормального распределения по опытным данным. Доверительные интервалы для средних. Интервальная оценка истинного значения измеряемой величины. Применение распределения Стьюдента для определения доверительных интервалов. Методы обработки медицинских данных.
Теория погрешностей, порядок обработка результатов прямых и косвенных измерений. Понятие о корреляционном анализе.
Математическая статистика
Методы математической статистики позволяют систематизировать и оценивать экспериментальные данные, которые рассматриваются как случайные величины.
§3.1. Основные понятия математической статистики
В главе 2 были рассмотрены некоторые понятия и закономерности, которым подчинены массовые случайные явления. Одной из практических задач, связанных с этим, является создание методов отбора данных (статистические данные) из большой совокупности и их обработки. Такие вопросы рассматриваются в математической статистике.
Математическая статистика — наука о математических методах систематизации и использования статистических данных для решения научных и практических задач.
Математическая статистика тесно примыкает к теории вероятностей и базируется на ее понятиях. Однако главным в математической статистике является не распределение случайных величин, а анализ статистических данных и выяснение, какому распределению они соответствуют.
Предположим, что необходимо изучить множество объектов по какому-либо признаку. Это возможно сделать, либо проведя сплошное наблюдение (исследование, измерение), либо не сплошное, выборочное.
Выборочное, т. е. неполное, обследование может оказаться предпочтительнее по следующим причинам. Во-первых, естественно, что обследование части менее трудоемко, чем обследование целого; следовательно, одна из причин — экономическая. Во-вторых, может оказаться и так, что сплошное обследование просто нереально. Для того чтобы его провести, возможно, нужно уничтожить всю исследуемую технику или загубить все исследуемые биологические объекты. Так, например, врач, имплантирующий электроды в улитку для кохлеарного протезирования (см. § 6.5), должен иметь вероятностные представления о расположении улитки слухового аппарата. Казалось бы, наиболее достоверно такие сведения можно было получить при сплошном патологоанатомическом вскрытии всех умерших с производством соответствующих замеров. Однако достаточно собрать нужные сведения при выборочных измерениях.
Большая статистическая совокупность, из которой отбирается часть объектов для исследования, называется генеральной совокупностью, а множество объектов, отобранных из нее, — выборочной совокупностью, или выборкой.
Свойство объектов выборки должно соответствовать свойству объектов генеральной совокупности, или, как принято говорить, выборка должна быть представительной (репрезентативной). Так, например, если целью является изучение состояния здоровья населения большого города, то нельзя воспользоваться выборкой населения, проживающего в одном из районов города. Условия проживания в разных районах могут отличаться (различная влажность, наличие предприятий, жилищных строений и т. п.) и, таким образом, влиять на состояние здоровья. Поэтому выборка должна представлять случайно отобранные объекты.
Если записать в последовательности измерений все значения величины х в выборке, то получим простой статистический ряд. Например, рост мужчин (см): 170, 169, ... . Такой ряд неудобен для анализа, так как в нем нет последовательности возрастания (или убывания) значений, встречаются и повторяющиеся величины. Поэтому целесообразно ранжировать ряд, например, в возрастающем порядке значений и указать их повторяемость. Тогда статистическое распределение выборки:171, 172, 172, 168,

(3.1)
Здесь xi — наблюдаемые значения признака (варианта); ni — число наблюдений варианты xi (частота); рi* — относительная частота.
![]()
всего k вариант. Статистическое распределение — это совокупность вариант и соответствующих им частот (или относительных частот), т. е. это совокупность данных 1-й и 2-й строки или 1-й и 3-й строки в (3.1).
В медицинской литературе статистическое распределение, состоящее из вариант и соответствующих им частот, получило название вариационного ряда.
Наряду с дискретным (точечным) статистическим распределением, которое было описано, используют непрерывное (интервальное) статистическое распределение:

(3.2)
Здесь xi-1, xi - i-й интервал, в котором заключено количественное значение признака; ni — сумма частот вариант, попавших в этот интервал; р*i — сумма относительных частот.
В качестве примера дискретного статистического распределения укажем массы новорожденных мальчиков (кг) и частоты (табл. 5).
Таблица 5

Общее количество мальчиков (объем выборки)
(3.3)
Можно это распределение представить и как непрерывное (интервальное) (табл. 6).
Таблица 6
|
2,65 — 2,75 |
2,75 — 2,85 |
2,85 — 2,95 |
2,95 — 3,05 |
3,05 — 3,15 |
… |
|
1 |
2 |
|
7 |
8 |
… |
Для наглядности статистические распределения изображают графически в виде полигона и гистограммы.


Гистограмма частот — совокупность смежных прямоугольников, построенных на одной прямой линии (рис. 3.2), основания прямоугольников одинаковы и равны а, а высоты равны отношению частоты (или относительной частоты) к а:
![]()
(3.4)
Таким образом, площадь каждого прямоугольника равна соответственно
![]()
![]()
,
а площадьгистограммы
относительных частот
Наиболее распространенными характеристиками статистического распределения являются средние величины: мода, медиана и средняя арифметическая, или выборочная средняя.
Мода (Мо) равна варианте, которой соответствует наибольшая частота. В распределении массы новорожденных (см. табл. 5) Мо = 3,3 кг.
Медиана (Me) равна варианте, которая расположена в середине статистического распределения. Она делит статистический (вариационный) ряд на две равные части. При четном числе вариант за медиану принимают среднее значение из двух центральных вариант. В рассмотренном распределении (см. табл. 5) Me = 3,4 кг.
Выборочная средняя (хв) определяется как среднее арифметическое значение вариант статистического ряда:
![]()
(3.5)
(3.6)
![]()
вводят характеристику, называемуювыборочной дисперсией,
— среднее
арифметическое квадратов отклонения
вариант от их среднего
значения:
(3.7)
Квадратный корень из выборочной дисперсии называют выборочным средним квадратическим отклонением:
![]()
(3.8)

