
- •Теория вероятностей
- •§2.1. Случайное событие. Вероятность
- •§ 2.2. Случайная величина. Закон распределения. Числовые характеристики
- •§ 2.3. Нормальный закон распределения
- •§ 2.4. Распределения Максвелла и Больцмана
- •Лекция 2.
- •Математическая статистика
- •§3.1. Основные понятия математической статистики
- •§ 3.2. Оценка параметров генеральной совокупности по ее выборке
- •§3.3. Проверка гипотез
- •§ 3.4. Корреляционная зависимость. Уравнения регрессии
- •Лекция 3.
- •Механические колебания и волны.
- •5.1. Свободные механические колебания (незатухающие и затухающие)
- •5.2. Кинетическая и потенциальная энергии колебательного движения
- •5.3. Сложение гармонических колебаний
- •5.4. Сложное колебание и его гармонический спектр
- •5.5. Вынужденные колебания. Резонанс
- •5.6. Автоколебания
- •5.7. Уравнение механической волны
- •5.8. Поток энергии и интенсивность волны
- •5.9. Ударные волны
- •5.10. Эффект Доплера
- •Лекция 4
- •Акустика
- •6.1. Природа звука и его физические характеристики
- •§ 6.2. Характеристики слухового ощущения. Понятие об аудиометрии.
- •§ 6.3. Физические основы звуковых методов исследования в клинике
- •§ 6.4. Волновое сопротивление. Отражение звуковых волн. Реверберация
- •§ 6.5. Физика слуха
- •6.6. Ультразвук и его применения в медицине
- •6.7. Инфразвук
- •6.8. Вибрации
- •Лекция 5
- •Течение и свойства жидкостей
- •Уравнение Бернулли.
- •1. Схема трубки тока жидкости для вывода формулы Бернулли.
- •1)Наклонная трубка тока постоянного сечения.
- •2)Горизонтальная трубка тока переменного сечения.
- •3) Измерение скорости жидкости. Трубка Пито.
- •7.1. Вязкость жидкости. Уравнение Ньютона. Ньютоновские и неньютоновские жидкости
- •7.2. Течение вязкой жидкости по трубам. Формула Пуазейля
- •Факторы, влияющие на вязкость крови в организме.
- •9.1. Модели кровообращения
- •Лекция 6
- •7.5. Турбулентное течение. Число Рейнольдса
- •9.1. Модели кровообращения
- •9.2. Пульсовая волна
- •9.3. Работа и мощность сердца. Аппарат искусственного кровообращения
- •Лекция 7.
- •Физические процессы в биологических мембранах
- •11.1. Строение и модели мембран
- •11.2. Некоторые физические свойства и параметры мембран
- •11.3. Перенос молекул (атомов) через мембраны. Уравнение Фика
- •11.4. Уравнение Нернста—Планка. Перенос ионов через мембраны
- •11.5. Разновидности пассивного переноса молекул и ионов через мембраны
- •11.6. Активный транспорт. Опыт Уссинга
- •Лекция 8.
- •11.7. Равновесный и стационарный мембранные потенциалы. Потенциал покоя
- •11.8. Потенциал действия и его распространение
- •11.9. Активно-возбудимые среды. Автоволновые процессы в сердечной мышце
- •Лекция 9.
- •Электрическое поле
- •12.1. Напряженность и потенциал — характеристики электрического поля
- •12.2. Электрический диполь
- •12.3. Понятие о мультиполе
- •12.4. Дипольный электрический генератор (токовый диполь)
- •12.5. Физические основы электрокардиографии
- •12.6. Диэлектрики в электрическом поле
- •12.7. Пьезоэлектрический эффект
- •12.8. Энергия электрического поля
- •12.11. Электрический разряд в газах. Аэроионы и их лечебно-профилактическое действие
- •Лекция 10.
- •12.9. Электропроводимость электролитов
- •12.10. Электропроводимость биологических тканей и жидкостей при постоянном токе
- •15.1. Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
- •14.2. Переменный ток
- •14.3. Полное сопротивление в цепи переменного тока. Резонанс напряжений
- •14.4. Импеданс тканей организма. Дисперсия импеданса. Физические основы реографии
- •Магнитное поле
- •13.1. Основные характеристики магнитного поля
- •13.2. Закон Ампера
- •13.3. Действие магнитного поля на движущийся электрический заряд. Сила Лоренца
- •13.4. Магнитные свойства вещества
- •13.5. Магнитные свойства тканей организма. Понятие о биомагнетизме и магнитобиологии
12.10. Электропроводимость биологических тканей и жидкостей при постоянном токе
Биологические ткани и органы являются довольно разнородными образованиями с различными электрическими сопротивлениями, которые могут изменяться при действии электрического тока. Это обусловливает трудности измерения электрического сопротивления живых биологических систем.
Электропроводимость отдельных участков организма, находящихся между электродами, наложенными непосредственно на поверхность тела, существенно зависит от сопротивления кожи и подкожных слоев. Внутри организма ток распространяется в основном по кровеносным и лимфатическим сосудам, мышцам, оболочкам нервных стволов. Сопротивление кожи, в свою очередь, определяется ее состоянием: толщиной, возрастом, влажностью и т. п.
Электропроводимость тканей и органов зависит от их функционального состояния и, следовательно, может быть использована как диагностический показатель. Так, например, при воспалении, когда клетки набухают, уменьшается сечение межклеточных соединений и увеличивается электрическое сопротивление; физиологические явления, вызывающие потливость, сопровождаются возрастанием электропроводимости кожи и т. д.
Приведем удельные сопротивления различных тканей и жидкостей организма (табл. 22).
Таблица 22
|
, Ом • м |
|
|
, Ом • м |
Спинномозговая жидкость |
0,55 |
|
Ткань жировая |
33,3 |
Кровь |
1,66 |
|
Кожа сухая |
105 |
Мышцы |
2 |
|
Кость без надкостницы |
107 |
Ткань мозговая и нервная |
14,3 |
|
|
|
14.6.
Физические процессы в тканях при воздействии током
и электромагнитными полями
Все вещества состоят из молекул, каждая из них является системой зарядов. Поэтому состояние тел существенно зависит от протекающих через них токов и от воздействующего электромагнитного поля. Электрические свойства биологических тел более сложны, чем свойства неживых объектов, ибо организм - это еще и совокупность ионов с переменной концентрацией в пространстве Первичный механизм воздействия токов и электромагнитных полей на организм — физический, он и рассматривается в главе применительно к медицинским лечебным методам
15.1. Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
Человеческий организм в значительной степени состоит из биологических жидкостей, содержащих большое количество ионов, которые участвуют в различных обменных процессах.
Под влиянием электрического поля ионы движутся с разной скоростью и скапливаются около клеточных мембран, образуя встречное электрическое поле, называемое поляризационным. Таким образом, первичное действие постоянного тока связано с движением ионов, их разделением и изменением их концентрации в разных элементах тканей.
Воздействие постоянного тока на организм зависит от силы тока, поэтому весьма существенно электрическое сопротивление тканей и прежде всего кожи. Влага, пот значительно уменьшают сопротивление, что даже при небольшом напряжении может вызвать значительный ток через организм.
Непрерывный постоянный ток напряжением 60—80 В используют как лечебный метод физиотерапии (гальванизация).
Источником тока обычно служит двухполупериодный выпрямитель — аппарат для гальванизации. Применяют для этого электроды из листового свинца или станиоля толщиной 0,3—0,5 мм. Так как продукты электролиза раствора поваренной соли, содержащегося в тканях, вызывают прижигание, то между электродами и кожей помещают гидрофильные прокладки, смоченные, например, теплой водой.
Дозируют силу постоянного тока по показаниям миллиамперметра, при этом обязательно учитывают предельно допустимую плотность тока — 0,1 мА/см2.
Постоянный ток используют в лечебной практике также и для введения лекарственных веществ через кожу или слизистые оболочки. Этот метод получил название электрофореза лекарственных веществ.
Для этой цели поступают так же, как и при гальванизации, но прокладку активного электрода смачивают раствором соответствующего лекарственного вещества. Лекарство вводят с того полюса, зарядом которого оно обладает: анионы вводят с катода, катионы — с анода.
Введение
лекарственных веществ с помощью
постоянного тока
хорошо иллюстрирует следующий опыт.
Двум кроликам выбривают
участки кожи на обоих боках и к выбритым
местам прикрепляют
фланелевые прослойки; одни из них смочены
раствором
азотнокислого стрихнина, другие
— раствором поваренной соли (рис.
15.1). На фланель накладывают электроды
и пропускают по цепи токсилой
50 мА. Спустя некоторое время
Рис. 15.1
кролик, у которого стрихнин на
аноде, погибает
при типичных явлениях
отравления этим веществом. Другой
же кролик, у которого стрихнин
на катоде, не погибает, но если изменить
направление тока, то и он погибнет.
Гальванизацию и электрофорез лекарственных веществ можно осуществлять с помощью жидкостных электродов в виде ванн, в которые погружаются конечности пациента.