
- •Теория вероятностей
- •§2.1. Случайное событие. Вероятность
- •§ 2.2. Случайная величина. Закон распределения. Числовые характеристики
- •§ 2.3. Нормальный закон распределения
- •§ 2.4. Распределения Максвелла и Больцмана
- •Лекция 2.
- •Математическая статистика
- •§3.1. Основные понятия математической статистики
- •§ 3.2. Оценка параметров генеральной совокупности по ее выборке
- •§3.3. Проверка гипотез
- •§ 3.4. Корреляционная зависимость. Уравнения регрессии
- •Лекция 3.
- •Механические колебания и волны.
- •5.1. Свободные механические колебания (незатухающие и затухающие)
- •5.2. Кинетическая и потенциальная энергии колебательного движения
- •5.3. Сложение гармонических колебаний
- •5.4. Сложное колебание и его гармонический спектр
- •5.5. Вынужденные колебания. Резонанс
- •5.6. Автоколебания
- •5.7. Уравнение механической волны
- •5.8. Поток энергии и интенсивность волны
- •5.9. Ударные волны
- •5.10. Эффект Доплера
- •Лекция 4
- •Акустика
- •6.1. Природа звука и его физические характеристики
- •§ 6.2. Характеристики слухового ощущения. Понятие об аудиометрии.
- •§ 6.3. Физические основы звуковых методов исследования в клинике
- •§ 6.4. Волновое сопротивление. Отражение звуковых волн. Реверберация
- •§ 6.5. Физика слуха
- •6.6. Ультразвук и его применения в медицине
- •6.7. Инфразвук
- •6.8. Вибрации
- •Лекция 5
- •Течение и свойства жидкостей
- •Уравнение Бернулли.
- •1. Схема трубки тока жидкости для вывода формулы Бернулли.
- •1)Наклонная трубка тока постоянного сечения.
- •2)Горизонтальная трубка тока переменного сечения.
- •3) Измерение скорости жидкости. Трубка Пито.
- •7.1. Вязкость жидкости. Уравнение Ньютона. Ньютоновские и неньютоновские жидкости
- •7.2. Течение вязкой жидкости по трубам. Формула Пуазейля
- •Факторы, влияющие на вязкость крови в организме.
- •9.1. Модели кровообращения
- •Лекция 6
- •7.5. Турбулентное течение. Число Рейнольдса
- •9.1. Модели кровообращения
- •9.2. Пульсовая волна
- •9.3. Работа и мощность сердца. Аппарат искусственного кровообращения
- •Лекция 7.
- •Физические процессы в биологических мембранах
- •11.1. Строение и модели мембран
- •11.2. Некоторые физические свойства и параметры мембран
- •11.3. Перенос молекул (атомов) через мембраны. Уравнение Фика
- •11.4. Уравнение Нернста—Планка. Перенос ионов через мембраны
- •11.5. Разновидности пассивного переноса молекул и ионов через мембраны
- •11.6. Активный транспорт. Опыт Уссинга
- •Лекция 8.
- •11.7. Равновесный и стационарный мембранные потенциалы. Потенциал покоя
- •11.8. Потенциал действия и его распространение
- •11.9. Активно-возбудимые среды. Автоволновые процессы в сердечной мышце
- •Лекция 9.
- •Электрическое поле
- •12.1. Напряженность и потенциал — характеристики электрического поля
- •12.2. Электрический диполь
- •12.3. Понятие о мультиполе
- •12.4. Дипольный электрический генератор (токовый диполь)
- •12.5. Физические основы электрокардиографии
- •12.6. Диэлектрики в электрическом поле
- •12.7. Пьезоэлектрический эффект
- •12.8. Энергия электрического поля
- •12.11. Электрический разряд в газах. Аэроионы и их лечебно-профилактическое действие
- •Лекция 10.
- •12.9. Электропроводимость электролитов
- •12.10. Электропроводимость биологических тканей и жидкостей при постоянном токе
- •15.1. Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
- •14.2. Переменный ток
- •14.3. Полное сопротивление в цепи переменного тока. Резонанс напряжений
- •14.4. Импеданс тканей организма. Дисперсия импеданса. Физические основы реографии
- •Магнитное поле
- •13.1. Основные характеристики магнитного поля
- •13.2. Закон Ампера
- •13.3. Действие магнитного поля на движущийся электрический заряд. Сила Лоренца
- •13.4. Магнитные свойства вещества
- •13.5. Магнитные свойства тканей организма. Понятие о биомагнетизме и магнитобиологии
11.8. Потенциал действия и его распространение
Все живые клетки при действии различных раздражителей (химических, механических, температурных и пр.) способны переходить в возбужденное состояние. Опыт показывает, что возбужденный участок становится электроотрицательным по отношению к покоящемуся, что является показателем перераспределения ионных потоков в возбужденном участке. Реверсия потенциала при возбуждении кратковременна, и после окончания возбуждения через некоторое время вновь восстанавливается исходный потенциал покоя. Общее изменение разности потенциалов на мембране, происходящее при возбуждении клеток, называется потенциалом действия. На рис. 11.17 представлен потенциал действия гигантского аксона кальмара, обозначены отдельные стадии изменения потенциала. В частности, для клетки характерен так называемый запаздывающий потенциал, когда в течение некоторого времени на мембране существует даже меньший потенциал, чем потенциал покоя.
Было показано, что возбуждение связано
с увеличением электропроводности
клеточной мембраны. При этом временная
зависимость электропроводимости
повторяла форму потенциала действия.
Чтобы решить вопрос, для каких ионов
изменяется проницаемость мембраны,
следует обратить внимание, что потенциал
действия приводит к кратковременному
возрастанию потенциала внутри клетки
(см. рис. 11.17). Отрицательный относительно
внешней среды потенциал становится
положительным. Если по уравнению Нернста
(11.38) вычислить равновесные потенциалы
на мембране аксона кальмара, то получим
соответственно для ионов К+, Na+ и Сl-величины -90, +46 и -29 мВ. Так как при
изменении проницаемости мембраны для
какого-либо иона этот ион будет проникать
через нее, стремясь создать равновесное
состояние, то числовые данные показывают,
что внутрь клетки проникают ионы Na+,
создавая там положительный потенциал.
Следовательно, при возбуждении клетки
в начальный период увеличивается
проницаемость мембран именно для ионов
натрия. «Натриевая теория» возникновения
потенциала действия была предложена,
разработана и экспериментально
подтверждена А. Ходжкином и А. Хаксли,
за что в 1963 г. они были удостоены
Нобелевской премии.
Естественно, что при таком нарушении равновесия ионы калия начнут перемещаться наружу, где их концентрация существенно меньше. Для того чтобы выяснить, какая часть тока «натриевая», а какая «калиевая», можно провести то же возбуждение, но в искусственных условиях, когда в среде, окружающей аксон, нет натрия. В этом случае (см. кривую 2) ток обусловливается только выходом ионов калия наружу из клетки. Разница значений тока для двух кривых показана на кривой3: кривая3есть разность кривых1и2. Она дает зависимость от времени ионного тока натрия. На этой кривой частьасоответствует открыванию натриевых каналов, аб— их закрытию (инактивации).
В целом последовательность событий, происходящих на клеточной мембране при возбуждении, выглядит следующим образом. При возбуждении в мембране открываются каналы для ионов натрия (проницаемость мембраны возрастает более чем в 5000 раз). В результате отрицательный заряд с внутренней стороны мембраны становится положительным, что соответствует пику мембранного потенциала (фаза деполяризации мембраны). Затем поступление натрия из внешней среды прекращается. В это время натриевые каналы закрываются, но открываются калиевые. Калий проходит в соответствии с градиентом концентрации из клетки до тех пор, пока не восстановится первоначальный отрицательный заряд на мембране и мембранный потенциал не достигнет своего первоначального значения (фаза реполяризации). На самом деле выход ионов калия из клетки продолжается дольше, чем это требуется для восстановления потенциала покоя. В результате за пиком потенциала действия следует небольшой минимум (запаздывающий потенциал).
Ионные каналы имеют белковое происхождение (см. рис. 11.3 и 11.13). Они селективно (выборочно) пропускают ионы разного вида. Канал может быть «закрыт» (блокирован) молекулами ядов, его пропускная способность зависит от действия некоторых лекарственных средств. Поэтому теория ионных каналов в мембранах является важной частью молекулярной фармакологии.
По электрическим
свойствам аксон напоминает кабель с
проводящей сердцевиной и изолирующей
оболочкой. Однако для того чтобы в кабеле
не было значительных потерь энергии
при протекании тока,
сопротивление его должно быть малым, а
сопротивление
изоляции — очень большим. В аксоне
проводящим веществом
служит аксоплазма, т. е. раствор
электролита, удельноесопротивление
которого в миллионыраз
больше, чем у меди или алюминия,
из которых изготавливают обычные
кабели. Удельное сопротивление биомембран
достаточно велико, но вследствие их
малой толщины сопротивление изоляции
«аксонного кабеля» в сотни тысяч раз
меньше, чем у технического кабеля. По
этой причине однородное нервное
волокно не может проводить электрический
сигнал на далекое расстояние, интенсивность
сигнала быстро затухает. Расчеты
показывают, что напряжение на мембране
волокна будет экспоненциально уменьшаться
по мере удаления от места возбуждения
(рис. 11.20). Если величина потенциала
действия в месте возбуждения была равна mах,
то на расстоянии l
от этого места потенциал на мембране
будет равен:
(11.40)
где — постоянная длины нервного волокна, которая определяет степень затухания сигнала в аксоне по экспоненциальному закону. Эту величину можно рассчитать по следующей приближеннойформуле:
(11.41)
где d — диаметр волокна, R — поверхностное сопротивление мембраны в Ом • м2 (т. е. сопротивление 1 м2 ее поверхности) и — удельное сопротивление аксоплазмы в Ом • м.
Расчеты, проведенные для аксона кальмара, показывают, что на конце аксона величина сигнала должна быть ничтожно малой. Однако существование локальных токов приводит к тому, что возбуждение передается по нервному волокну без затухания. Это объясняется тем, что локальные токи лишь деполяризуют мембрану до критического уровня, а потенциалы действия в каждом участке мембраны поддерживаются независимыми ионными потоками, перпендикулярными к направлению распространения возбуждения.
Из (11.40) видно, что с увеличением степень затухания сигнала уменьшается. Было показано, что при этом возрастает скорость проведения импульса, а это очень важно для жизнедеятельности любого организма. Величины и примерно одинаковы для всех животных клеток, и поэтому увеличения постоянной длины можно добиться путем увеличения диаметра d аксона. Именно поэтому у кальмаров аксоны достигают «гигантских» размеров (диаметр до 0,5 мм), что обеспечивает кальмару достаточно быстрое проведение нервного импульса и, следовательно, быстроту реакции на внешние раздражители.
Увысокоорганизованных животных с развитой
нервной системой
толстые волокна оказываются неэкономичными,
и затухание сигнала предотвращается
другим способом. Мембраны аксонов у них
покрытымиелином — веществом,
содержащим много холестерина и мало
белка (рис. 11.21). Удельное сопротивление
миелина значительно
выше удельного сопротивления других
биологических мембран. Помимо этого,
толщина миелиновой оболочки во много
раз больше толщины обычной мембраны,
что приводит к возрастанию диаметра
волокна и соответственно величины.
Как видно из рис. 11.21, миелиновая оболочка
не полностью покрывает
все волокно; оно разделено на отдельные
сегменты, между которыми на участках
длиной около 1 мкм мембрана аксона
непосредственно соприкасается с
внеклеточным раствором. Области, вкоторых мембрана
контактирует с раствором, называют
перехватами Ранвье. В связи с
большим сопротивлением миелиновой
оболочки по поверхности
аксона токи протекать не могут, и
затухание сигнала резко уменьшается.
При возбуждении одного узла возникают
токи между ним и другими узлами. Ток,
подошедший к другому узлу, возбуждает
его, вызывает появление в этом местепотенциала действия,
и процесс распространяется по всему
волокну. Затраты энергии на
распространение сигнала по волокну,покрытому миелином,
значительно меньше, чем по
немиелинизированному, так как общее
количество ионов натрия, проходящих
через мембрану
в области узлов, значительно меньше,
чем если бы они проходили через всю
поверхность мембраны. При некоторых
заболеваниях структура миелиновых
оболочек нарушается, и это
приводит к нарушению проведения нервного
возбуждения. При блокировании узлов
нервного волокна анестезирующими
средствами, например ядом кураре,
сопротивление аксона возрастает и
прохождение сигналов по нерву замедляется
или совсемпрекращается.
Поскольку узлы замыкаются через аксоплазму и внеклеточную среду, то можно предположить, что при увеличении сопротивления внешней среды скорость проведения нервного импульса уменьшится. Это предположение было проверено на опыте. Нервные волокна сначала помещали в морскую воду, а затем в масло с большим удельным сопротивлением. Скорость проведения импульса во втором случае уменьшалась в 1,5—2 раза (в зависимости от диаметра волокна).
Существует некоторая формальная аналогия между распространением потенциала действия по нервному волокну и электромагнитной волной в двухпроводной линии или коаксиальном кабеле. Однако между этими процессами имеется существенное различие.Электромагнитная волна, распространяясь в среде, ослабевает, так как растрачивает свою энергию. Волна возбуждения, проходящая по нервному волокну, не затухает, получая энергию в самой среде (энергию заряженной мембраны). Волны, получающие энергию из среды в процессе распространения, называютавтоволнами, а среду — активно-возбудимой средой (ABC). В § 11.9 будут рассмотрены более подробно свойства авто волн, распространяющихся в ABC.