- •Теория вероятностей
- •§2.1. Случайное событие. Вероятность
- •§ 2.2. Случайная величина. Закон распределения. Числовые характеристики
- •§ 2.3. Нормальный закон распределения
- •§ 2.4. Распределения Максвелла и Больцмана
- •Лекция 2.
- •Математическая статистика
- •§3.1. Основные понятия математической статистики
- •§ 3.2. Оценка параметров генеральной совокупности по ее выборке
- •§3.3. Проверка гипотез
- •§ 3.4. Корреляционная зависимость. Уравнения регрессии
- •Лекция 3.
- •Механические колебания и волны.
- •5.1. Свободные механические колебания (незатухающие и затухающие)
- •5.2. Кинетическая и потенциальная энергии колебательного движения
- •5.3. Сложение гармонических колебаний
- •5.4. Сложное колебание и его гармонический спектр
- •5.5. Вынужденные колебания. Резонанс
- •5.6. Автоколебания
- •5.7. Уравнение механической волны
- •5.8. Поток энергии и интенсивность волны
- •5.9. Ударные волны
- •5.10. Эффект Доплера
- •Лекция 4
- •Акустика
- •6.1. Природа звука и его физические характеристики
- •§ 6.2. Характеристики слухового ощущения. Понятие об аудиометрии.
- •§ 6.3. Физические основы звуковых методов исследования в клинике
- •§ 6.4. Волновое сопротивление. Отражение звуковых волн. Реверберация
- •§ 6.5. Физика слуха
- •6.6. Ультразвук и его применения в медицине
- •6.7. Инфразвук
- •6.8. Вибрации
- •Лекция 5
- •Течение и свойства жидкостей
- •Уравнение Бернулли.
- •1. Схема трубки тока жидкости для вывода формулы Бернулли.
- •1)Наклонная трубка тока постоянного сечения.
- •2)Горизонтальная трубка тока переменного сечения.
- •3) Измерение скорости жидкости. Трубка Пито.
- •7.1. Вязкость жидкости. Уравнение Ньютона. Ньютоновские и неньютоновские жидкости
- •7.2. Течение вязкой жидкости по трубам. Формула Пуазейля
- •Факторы, влияющие на вязкость крови в организме.
- •9.1. Модели кровообращения
- •Лекция 6
- •7.5. Турбулентное течение. Число Рейнольдса
- •9.1. Модели кровообращения
- •9.2. Пульсовая волна
- •9.3. Работа и мощность сердца. Аппарат искусственного кровообращения
- •Лекция 7.
- •Физические процессы в биологических мембранах
- •11.1. Строение и модели мембран
- •11.2. Некоторые физические свойства и параметры мембран
- •11.3. Перенос молекул (атомов) через мембраны. Уравнение Фика
- •11.4. Уравнение Нернста—Планка. Перенос ионов через мембраны
- •11.5. Разновидности пассивного переноса молекул и ионов через мембраны
- •11.6. Активный транспорт. Опыт Уссинга
- •Лекция 8.
- •11.7. Равновесный и стационарный мембранные потенциалы. Потенциал покоя
- •11.8. Потенциал действия и его распространение
- •11.9. Активно-возбудимые среды. Автоволновые процессы в сердечной мышце
- •Лекция 9.
- •Электрическое поле
- •12.1. Напряженность и потенциал — характеристики электрического поля
- •12.2. Электрический диполь
- •12.3. Понятие о мультиполе
- •12.4. Дипольный электрический генератор (токовый диполь)
- •12.5. Физические основы электрокардиографии
- •12.6. Диэлектрики в электрическом поле
- •12.7. Пьезоэлектрический эффект
- •12.8. Энергия электрического поля
- •12.11. Электрический разряд в газах. Аэроионы и их лечебно-профилактическое действие
- •Лекция 10.
- •12.9. Электропроводимость электролитов
- •12.10. Электропроводимость биологических тканей и жидкостей при постоянном токе
- •15.1. Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
- •14.2. Переменный ток
- •14.3. Полное сопротивление в цепи переменного тока. Резонанс напряжений
- •14.4. Импеданс тканей организма. Дисперсия импеданса. Физические основы реографии
- •Магнитное поле
- •13.1. Основные характеристики магнитного поля
- •13.2. Закон Ампера
- •13.3. Действие магнитного поля на движущийся электрический заряд. Сила Лоренца
- •13.4. Магнитные свойства вещества
- •13.5. Магнитные свойства тканей организма. Понятие о биомагнетизме и магнитобиологии
11.4. Уравнение Нернста—Планка. Перенос ионов через мембраны
Как известно, на мембране существует разность потенциалов, следовательно, в мембране имеется электрическое поле. Оно оказывает влияние на диффузию заряженных частиц (ионов и электронов). Между напряженностью поля Е и градиентом потенциала d/dx существует известное соотношение (см. § 12.1):
(11.22)
Заряд иона равен
Ze. На один ион
действует сила
; сила,действующая
на 1 моль ионов, равна
(11.23)
где F — постоянная Фарадея, F = eNA.
Скорость направленного движения ионов пропорциональна действующей силе [см. (11.4), (11.5)]:
(11.24)

Чтобы найти поток вещества (ионов), выделим объем электролита (рис. 11.12) в виде прямоугольного параллелепипеда с ребром, численно равным скорости ионов. Все ионы, находящиеся в параллелепипеде, за 1 с пройдут через площадку S. Это и будет поток Ф. Число молей этих ионов можно найти, умножая объем параллелепипеда (S) на молярную концентрацию ионов с:
Ф = Sс. (11.25)
Плотность потока вещества найдем, используя формулы (11.24) и (11.25):
(11.26)
В общем случае перенос ионов определяется двумя факторами: неравномерностью их распределения, т.е. градиентом концентрации [см. (11.11)], и воздействием электрического поля [см. (11.26)]:
(11.27)
Это уравнение Нернста—Планка. Используя выражение для подвижности (11.12), преобразуем уравнение (11.27) к виду
(11.28)
Это другая форма записи уравнения Нернста—Планка.
Используем
уравнение Нернста—Планка для установления
зависимости
плотности диффузионного потока от
концентрации ионов
и от напряженности электрического поля.
Предположим, система
находится в стационарном состоянии, т.
е. плотность потока J
постоянна.
Электрическое поле в мембране примем
за однородное,
следовательно, напряженность поля
одинакова, а потенциал
линейно изменяется с расстоянием. Это
позволит считать,
что
где м
— разность потенциалов на мембране.
Упростим запись
слагаемого в уравнении (11.28):
![]()
где
(11.29)
— вспомогательная величина (безразмерный потенциал). С учетом (11.29) получим уравнение Нернста—Планка в виде:
(11.30)
Разделим переменные и проинтегрируем уравнение:
![]()
![]()
(11.31)
Потенцируя (11.31), получаем

откуда
![]()
(11.32)
Преобразуем формулу (11.32), учитывая выражения (11.19) и (11.20):
(11.33)
Вообще говоря, формула (11.33) справедлива как для положительных (Z > 0, > 0), так и для отрицательных (Z < 0, < 0) ионов. Однако для отрицательных ионов целесообразно видоизменить это выражение, подставив в него отрицательное значение безразмерного потенциала:
![]()
Разделим числитель и знаменатель этого выражения на е-:
(11.34)
При использовании этой формулы необходимо помнить, что отрицательные значения Z и уже учтены в самой формуле, т. е. — положительная величина.
Уравнения (11.33) и (11.34) устанавливают связь плотности стационарного потока ионов с тремя величинами: 1) проницаемостью мембран для данного иона, которая характеризует взаимодействие мембранных структур с ионом; 2) электрическим полем; 3) молярной концентрацией ионов в водном растворе, окружающем мембрану(ci иc0).
Проанализируем частные случаи уравнения (11.33):
а) = 0, что означает либо Z = 0 (нейтральные частицы), либо отсутствие электрического поля в мембране (м = 0), либо и то, и другое:
![]()
Найдем пределы отдельных сомножителей.
![]()
Эту неопределенность можно раскрыть по пра вилу Лопиталя:
![]()
![]()
Отсюда получаем, как и следовало ожидать, уравнение (11.21):
J = P(ci - с0);
б)одинаковая молярная концентрация ионов по разные стороны от мембраны (ci = с0 = с) при наличии электрического поля:
J = - Pc.
Это соответствует электропроводимости в электролите (см. § 12.9). Для нейтральных частиц (Z = 0 и = 0) J = 0;
в)если мембрана непроницаема для частиц (Р = 0), то, естественно, плотность потока равна нулю.
