- •Теория вероятностей
- •§2.1. Случайное событие. Вероятность
- •§ 2.2. Случайная величина. Закон распределения. Числовые характеристики
- •§ 2.3. Нормальный закон распределения
- •§ 2.4. Распределения Максвелла и Больцмана
- •Лекция 2.
- •Математическая статистика
- •§3.1. Основные понятия математической статистики
- •§ 3.2. Оценка параметров генеральной совокупности по ее выборке
- •§3.3. Проверка гипотез
- •§ 3.4. Корреляционная зависимость. Уравнения регрессии
- •Лекция 3.
- •Механические колебания и волны.
- •5.1. Свободные механические колебания (незатухающие и затухающие)
- •5.2. Кинетическая и потенциальная энергии колебательного движения
- •5.3. Сложение гармонических колебаний
- •5.4. Сложное колебание и его гармонический спектр
- •5.5. Вынужденные колебания. Резонанс
- •5.6. Автоколебания
- •5.7. Уравнение механической волны
- •5.8. Поток энергии и интенсивность волны
- •5.9. Ударные волны
- •5.10. Эффект Доплера
- •Лекция 4
- •Акустика
- •6.1. Природа звука и его физические характеристики
- •§ 6.2. Характеристики слухового ощущения. Понятие об аудиометрии.
- •§ 6.3. Физические основы звуковых методов исследования в клинике
- •§ 6.4. Волновое сопротивление. Отражение звуковых волн. Реверберация
- •§ 6.5. Физика слуха
- •6.6. Ультразвук и его применения в медицине
- •6.7. Инфразвук
- •6.8. Вибрации
- •Лекция 5
- •Течение и свойства жидкостей
- •Уравнение Бернулли.
- •1. Схема трубки тока жидкости для вывода формулы Бернулли.
- •1)Наклонная трубка тока постоянного сечения.
- •2)Горизонтальная трубка тока переменного сечения.
- •3) Измерение скорости жидкости. Трубка Пито.
- •7.1. Вязкость жидкости. Уравнение Ньютона. Ньютоновские и неньютоновские жидкости
- •7.2. Течение вязкой жидкости по трубам. Формула Пуазейля
- •Факторы, влияющие на вязкость крови в организме.
- •9.1. Модели кровообращения
- •Лекция 6
- •7.5. Турбулентное течение. Число Рейнольдса
- •9.1. Модели кровообращения
- •9.2. Пульсовая волна
- •9.3. Работа и мощность сердца. Аппарат искусственного кровообращения
- •Лекция 7.
- •Физические процессы в биологических мембранах
- •11.1. Строение и модели мембран
- •11.2. Некоторые физические свойства и параметры мембран
- •11.3. Перенос молекул (атомов) через мембраны. Уравнение Фика
- •11.4. Уравнение Нернста—Планка. Перенос ионов через мембраны
- •11.5. Разновидности пассивного переноса молекул и ионов через мембраны
- •11.6. Активный транспорт. Опыт Уссинга
- •Лекция 8.
- •11.7. Равновесный и стационарный мембранные потенциалы. Потенциал покоя
- •11.8. Потенциал действия и его распространение
- •11.9. Активно-возбудимые среды. Автоволновые процессы в сердечной мышце
- •Лекция 9.
- •Электрическое поле
- •12.1. Напряженность и потенциал — характеристики электрического поля
- •12.2. Электрический диполь
- •12.3. Понятие о мультиполе
- •12.4. Дипольный электрический генератор (токовый диполь)
- •12.5. Физические основы электрокардиографии
- •12.6. Диэлектрики в электрическом поле
- •12.7. Пьезоэлектрический эффект
- •12.8. Энергия электрического поля
- •12.11. Электрический разряд в газах. Аэроионы и их лечебно-профилактическое действие
- •Лекция 10.
- •12.9. Электропроводимость электролитов
- •12.10. Электропроводимость биологических тканей и жидкостей при постоянном токе
- •15.1. Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
- •14.2. Переменный ток
- •14.3. Полное сопротивление в цепи переменного тока. Резонанс напряжений
- •14.4. Импеданс тканей организма. Дисперсия импеданса. Физические основы реографии
- •Магнитное поле
- •13.1. Основные характеристики магнитного поля
- •13.2. Закон Ампера
- •13.3. Действие магнитного поля на движущийся электрический заряд. Сила Лоренца
- •13.4. Магнитные свойства вещества
- •13.5. Магнитные свойства тканей организма. Понятие о биомагнетизме и магнитобиологии
9.2. Пульсовая волна
При сокращении сердечной мышцы (систола) кровь выбрасывается из сердца в аорту и отходящие от нее артерии. Если бы стенки этих сосудов были жесткими, то давление, возникающее в крови на выходе из сердца, со скоростью звука передалось бы к периферии. Упругость стенок сосудов приводит к тому, что во время систолы кровь, выталкиваемая сердцем, растягивает аорту, артерии и артериолы, т. е. крупные сосуды воспринимают за время систолы больше крови, чем ее оттекает к периферии. Систолическое давление человека в норме равно приблизительно 16 кПа. Во время расслабления сердца (диастола) растянутые кровеносные сосуды спадают и потенциальная энергия, сообщенная им сердцем через кровь, переходит в кинетическую энергию тока крови, при этом поддерживается диастолическое давление, приблизительно равное 11кПа.
Распространяющуюся по аорте и артериям волну повышенного давления, вызванную выбросом крови из левого желудочка в период систолы, называют пульсовой волной.
П
ульсовая
волна распространяется со скоростью
5—10 м/с идаже более.
Следовательно, за время систолы (около
0,3 с) она должна
распространиться на расстояние
1,5—3 м, что больше расстояния от сердца
к конечностям. Это означает, что
начало пульсовой волны достигнет
конечностей
раньше, чем начнется спад давления
в аорте. Профиль части артерии
схематически показан на рис. 9.6: а
— после
прохождения пульсовой волны,
б —
в артерии начало пульсовой волны,в — в артерии пульсовая волна,г
— начинается
спад повышенного давления.
Пульсовой волне будет соответствовать пульсирование скорости кровотока в крупных артериях, однако скорость крови (максимальное значение 0,3—0,5 м/с) существенно меньше скорости распространения пульсовой волны.
Из модельного опыта и из общих представлений о работе сердца ясно, что пульсовая волна не является синусоидальной (гармонической). Как всякий периодический процесс, пульсовая волна может быть представлена суммой гармонических волн (см. § 5.4). Поэтому уделим внимание, как некоторой модели, гармонической пульсовой волне.
Предположим, что гармоническая волна [см. (5.48)] распространяется по сосуду вдоль оси X со скоростью . Вязкость крови и упруговязкие свойства стенок сосуда уменьшают амплитуду волны. Можно считать (см., например, § 5.1), что затухание волны будет экспоненциальным. На основании этого можно записатьследующее уравнение для пульсовой волны:
(9.12)
где р0 — амплитуда давления в пульсовой волне;х — расстояние до произвольной точки от источника колебаний (сердца);t — время; — круговая частота колебаний; — некоторая константа, определяющая затухание волны. Длину пульсовой волны можно найти из формулы
(9.13)
Волна давления представляет некоторое «избыточное» давление. Поэтому с учетом «основного» давления ра (атмосферное давление или давление в среде, окружающей сосуд) можно изменение давления записать следующим образом:
.(9.14)
Как видно из (9.14), по мере продвижения крови (по мере увеличения х) колебания давления сглаживаются. Схематично на рис. 9.7 показано колебание давления в аорте вблизи сердца (а) и в артериолах(б). Графики даны в предположении модели гармонической пульсовой волны.
На рис. 9.8 приведены экспериментальные графики, показывающие изменение среднего значения давления и скорости икр кровотока в зависимости от типа кровеносных сосудов. Гидростатическое давление крови не учитывается. Давление — избыточное над атмосферным. Заштрихованная область соответствует колебанию давления (пульсовая волна).
Скорость пульсовой волны в крупных сосудах следующим образом зависит от их параметров (формула Моенса—Кортевега):
(9.15)


Рис. 9.7 Рис. 9.8
Интересно сопоставить (9.15) с выражением для скорости распространения звука в тонком стержне:
(9.16)
У человека с возрастом модуль упругости сосудов возрастает, поэтому, как следует из (9.15), становится больше и скорость пульсовой волны.
