- •Теория вероятностей
- •§2.1. Случайное событие. Вероятность
- •§ 2.2. Случайная величина. Закон распределения. Числовые характеристики
- •§ 2.3. Нормальный закон распределения
- •§ 2.4. Распределения Максвелла и Больцмана
- •Лекция 2.
- •Математическая статистика
- •§3.1. Основные понятия математической статистики
- •§ 3.2. Оценка параметров генеральной совокупности по ее выборке
- •§3.3. Проверка гипотез
- •§ 3.4. Корреляционная зависимость. Уравнения регрессии
- •Лекция 3.
- •Механические колебания и волны.
- •5.1. Свободные механические колебания (незатухающие и затухающие)
- •5.2. Кинетическая и потенциальная энергии колебательного движения
- •5.3. Сложение гармонических колебаний
- •5.4. Сложное колебание и его гармонический спектр
- •5.5. Вынужденные колебания. Резонанс
- •5.6. Автоколебания
- •5.7. Уравнение механической волны
- •5.8. Поток энергии и интенсивность волны
- •5.9. Ударные волны
- •5.10. Эффект Доплера
- •Лекция 4
- •Акустика
- •6.1. Природа звука и его физические характеристики
- •§ 6.2. Характеристики слухового ощущения. Понятие об аудиометрии.
- •§ 6.3. Физические основы звуковых методов исследования в клинике
- •§ 6.4. Волновое сопротивление. Отражение звуковых волн. Реверберация
- •§ 6.5. Физика слуха
- •6.6. Ультразвук и его применения в медицине
- •6.7. Инфразвук
- •6.8. Вибрации
- •Лекция 5
- •Течение и свойства жидкостей
- •Уравнение Бернулли.
- •1. Схема трубки тока жидкости для вывода формулы Бернулли.
- •1)Наклонная трубка тока постоянного сечения.
- •2)Горизонтальная трубка тока переменного сечения.
- •3) Измерение скорости жидкости. Трубка Пито.
- •7.1. Вязкость жидкости. Уравнение Ньютона. Ньютоновские и неньютоновские жидкости
- •7.2. Течение вязкой жидкости по трубам. Формула Пуазейля
- •Факторы, влияющие на вязкость крови в организме.
- •9.1. Модели кровообращения
- •Лекция 6
- •7.5. Турбулентное течение. Число Рейнольдса
- •9.1. Модели кровообращения
- •9.2. Пульсовая волна
- •9.3. Работа и мощность сердца. Аппарат искусственного кровообращения
- •Лекция 7.
- •Физические процессы в биологических мембранах
- •11.1. Строение и модели мембран
- •11.2. Некоторые физические свойства и параметры мембран
- •11.3. Перенос молекул (атомов) через мембраны. Уравнение Фика
- •11.4. Уравнение Нернста—Планка. Перенос ионов через мембраны
- •11.5. Разновидности пассивного переноса молекул и ионов через мембраны
- •11.6. Активный транспорт. Опыт Уссинга
- •Лекция 8.
- •11.7. Равновесный и стационарный мембранные потенциалы. Потенциал покоя
- •11.8. Потенциал действия и его распространение
- •11.9. Активно-возбудимые среды. Автоволновые процессы в сердечной мышце
- •Лекция 9.
- •Электрическое поле
- •12.1. Напряженность и потенциал — характеристики электрического поля
- •12.2. Электрический диполь
- •12.3. Понятие о мультиполе
- •12.4. Дипольный электрический генератор (токовый диполь)
- •12.5. Физические основы электрокардиографии
- •12.6. Диэлектрики в электрическом поле
- •12.7. Пьезоэлектрический эффект
- •12.8. Энергия электрического поля
- •12.11. Электрический разряд в газах. Аэроионы и их лечебно-профилактическое действие
- •Лекция 10.
- •12.9. Электропроводимость электролитов
- •12.10. Электропроводимость биологических тканей и жидкостей при постоянном токе
- •15.1. Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
- •14.2. Переменный ток
- •14.3. Полное сопротивление в цепи переменного тока. Резонанс напряжений
- •14.4. Импеданс тканей организма. Дисперсия импеданса. Физические основы реографии
- •Магнитное поле
- •13.1. Основные характеристики магнитного поля
- •13.2. Закон Ампера
- •13.3. Действие магнитного поля на движущийся электрический заряд. Сила Лоренца
- •13.4. Магнитные свойства вещества
- •13.5. Магнитные свойства тканей организма. Понятие о биомагнетизме и магнитобиологии
5.8. Поток энергии и интенсивность волны
Волновой процесс связан с распространением энергии. Количественной характеристикой перенесенной энергии является поток энергии.
Поток энергии волн (Ф) характеризуется средней энергией, переносимой волнами в единицу времени через некоторую поверхность. Усреднение должно быть сделано за время, значительнобольшее периода колебаний.
Единицей потока энергии волн является ватт (Вт).
Найдем связь потока энергии волн с энергией колеблющихся точек и скоростью распространения волны.

(5.53)
где
—
средняя
объемная плотность энергии колебательного
движения (среднее
значение энергии колебательного движения
частиц, участвующих
в волновом процессе и расположенных в
1 м3).
Поток энергии волн, отнесенный к площади, ориентированной перпендикулярно направлению распространения волн, называют плотностью потока энергии волн, или интенсивностью волн:
(5.54)
Единицей плотности потока энергии волн является ватт на квадратный метр (Вт/м2).
Энергия, переносимая упругой волной, складывается из потенциальной энергии деформации и кинетической энергии колеблющихся частиц. Приведем без вывода выражение для средней объемной плотности энергии волн:
(5.55)
где А — амплитуда колебаний точек среды, — плотность. Подставляя (5.55) в (5.54), имеем
![]()
Таким образом, плотность потока энергии упругих волн пропорциональна плотности среды, квадрату амплитуды колебаний частиц, квадрату частоты колебаний и скорости распространения волны.
5.9. Ударные волны
Один из распространенных примеров механической волны — звуковая волна (см. гл.6). В этом случае максимальная скорость колебаний отдельной молекулы воздуха составляет несколькосантиметров в секунду даже для достаточно большой интенсивности, т. е. значительно меньше скорости распространения волны (скорость звука в воздухе около 300 м/с). Это соответствует, как принято говорить, малым возмущениям среды.
Однако при больших возмущениях (взрыв, сверхзвуковое движение тел, мощный электрический разряд и т. п.) скорость колеблющихся частиц среды может уже стать сравнимой со скоростью звука, возникает ударная волна.
При взрыве высоконагретые продукты, обладающие большой плотностью, расширяются и сжимают слои окружающего воздуха. С течением времени объем сжатого воздуха возрастает. Тонкую переходную область, которая отделяет сжатый воздух от невозмущенного, в физике называют ударной волной. Схематично скачок плотности газа при распространении в нем ударной волны показан на рис. 5.22, а. Для сравнения на этом же рисунке показано изменение плотности среды при прохождении звуковой волны (рис. 5.22, б).
Ударная волна может обладать значительной энергией, так, при ядерном взрыве на образование ударной волны в окружающей среде затрачивается около 50% энергии взрыва. Поэтому ударная волна, достигая биологических и технических объектов, способна причинить смерть, увечья и разрушения.
