Добавил:
ilirea@mail.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора.docx
Скачиваний:
132
Добавлен:
22.08.2018
Размер:
1.46 Mб
Скачать

Лиганд - малая молекула (ион, гормон, лекарственный препарат и др.). Второй этап работы фермента - гидролиз атф. При этом происходит образование энзим - фосфатного комплекса (е-р).

Третий этап работы фермента - переход центра связывания Са2+ на другую сторону мембраны - транслокация.

Высвобождение энергии макроэргической связи происходит на четвертом этапе работы Са2+ АТФ-азы при гидролизе Е-Р. Эта энергия отнюдь не растрачивается вхолостую (т.е. не переходит в тепло), а используется на изменение константы связывания ионов кальция с ферментом. Перенос кальция с одной стороны мембраны на другую связан, таким образом, с затратой энергии, которая может составить 37,4 - 17,8 = 19,6 кДж/моль. Ясно, что энергия гидролиза АТФ хватает на перенос двух ионов кальция.

Перенос кальция из области меньшей (1-4 х 10-3 м) в область больших концентраций (1-10 х 10-3 м) - это и есть та работа, которую совершает Са - транспортная атФаза в мышечных клетках.

Для повторения цикла требуется возвращение кальций-связывающих центров изнутри наружу, то есть еще одно конформационное изменение а молекуле фермента.

Молекулярный механизм работы этих двух "насосов" во многом близок. Основные этапы работы Na+ K+ АТФаз таковы:

1. Присоединение снаружи двух ионов K+ и одной молекулы Mg2+ АТФ:

2 Ko+ + Mg АTФ + E (2 K+)(Mg АТФ)E

2. Гидролиз АТФ и образование энзим-фосфата:

(2 K+ )(Mg АТФ)E Mg АТФ + (2 K+)E - P

3. Перенос центров связывания K+ внутрь (транслокация 1):

(2 K+ )E - P E - P(2 K+ )

4. Отсоединение обоих ионов калия и замена этих ионов тремя

ионами Na, находящимися внутри клетки:

E - P(2 K+) + 3 Nai + E - P(3 Na+ ) + 2 K+ i

5. Гидролиз E - P:

E - P(3 Na+ ) E(3 Na+ ) + P (фосфат)

6. Перенос центров связывания вместе с ионами Na+ наружу (транслокация 2):

E(3 Na+ ) (3 Na+ )E

7. Отщепление 3 Na+ и присоединение 2 K+ снаружи:

2 K0+ + 3 Na+ (E) 3 Na+ + (2 K+ )E

Перенос 2 K+ внутрь клетки и выброс 3 Na+ наружу приводит в итоге к переносу одного положительного иона из цитоплазмы в окружающую среду, а это способствует появлению мембранного потенциала (со знаком "минус" внутри клетки).

Таким образом, Na+ K+ насос является электрогенным.

Проницаемость.

Проницаемость - это способность клеток и тканей поглощать, выделять и транспортировать химические вещества, пропуская их через мембраны клеток, стенки сосудов и клетки эпителия. Живые клетки и ткани находятся в состоянии непрерывного обмена химическими веществами с окружающей средой, получая из нее продукты питания и выводя в нее продукты метаболизма. Основным диффузионным барьером на пути движения веществ является клеточная мембрана. В 1899 году Овертон обнаружил, что дегкость прохождения веществ через клеточную мембрану зависела от способности этих веществ растворяться в жирах. В то же время ряд полярных веществ проникал в клетки независимо от растворимости в жирах, что можно было объяснить существованием в мембранах водных пор.

В настоящее время различают пассивную проницаемость, активный транспорт веществ и особые случаи проницаемости, связанные с фагоцитозом и пиноцитозом.

Основные виды диффузии - это диффузия веществ путем растворения в липидах мембраны, диффузия веществ через полярные поры, диффузия ионов через незаряженные поры. Особыми видами диффузии являются облегченная и обменная. Она обеспечивается особыми жирорастворимыми веществами-переносчиками, которые способны связать переносимое вещество по одну сторону мембраны, диффундировать с ним через мембрану и освобождать по другую сторону мембраны. Роль специфических переносчиков иона выполняют некоторые антибиотики, получившие название ионофорных (валиномин, нигерицин, моненсин, поеновые антибиотики нистатин, аифотерицин В и ряд других). Ионофоры могут быть разделены в свою очередь на три класса в зависимости от заряда переносчика и структуры кольца: нейтральный переносчик с замкнутым ковалентной связью кольцом (валиномицин, нактины, полиэфиры), заряженный переносчик с кольцом, замкнутым водородной связью (нигерицин, монензин). Заряженные переносчики с трудом проникают в заряженной форме через модельные и биологические мембраны, в то же время в нейтральной форме они свободно диффундируют в мембране. Нейтральная форма образуется путем формирования комплекса анионной формы переносчика с катионом. Таким образом, заряженные переносчики способны обменивать катионы, находящиеся преимущественно по одну сторону мембраны на катионы расвора, омывающего противоположную сторону мембраны.

Наиболее распространенным видом пассивной диффузии клеточных мембран является порная.

В пользу реально существующего порного механизма проницаемости свидетельствуют данные об осмотических свойствах клеток.

Классическое уравнение осмотического давления:

= cRT,

где - осмотическое давление, с - концентрация растворенного вещества, R - газовая константа, T - абсолютная температура, включает дополнительный член , изменяющийся от нуля до 1. Эта константа, получившая название коэффициента отражения, соответствует легкости прохождения через мембрану растворенного вещества в сравнении с прохождением молекулы воды.

Вид проницаемости, свойственный только живым клеткам и тканям, получил название активного транспорта. Активный транспорт - это перенос вещества через клеточную мембрану из окружающего раствора (гомоцеллюлярный активный транспорт) или через клеточный активный транспорт, протекающий против градиента электрохимической активности вещества с затратой свободной энергии организма. В настоящее время доказано, что молекулярная система, отвечающая за активный транспорт веществ, находится в клеточной мембране.

В настоящее время доказано, что основным элементом ионного насоса является Na+ K+ АТФ-аза. Изучение свойств этого мембранного фермента показало, что фермент только в присутствии ионов калия и натрия, причем ионы натрия активизируют фермент со стороны цитоплазмы, а ионы - из окружающего раствора. Специфическим ингибитором фермента является снрдечный гликозид-суабаин. В мембранах митохондрий известна другая молекулярная система, обеспечивающая откачку ионов водорода фермент H+ - АТФаза.

П.Митчел, автор хемиосмотической теории окислительного фосфолирования в митохондриях, ввел понятие вторичного активного транспорта веществ. Известны три способа трансмембранного переноса ионов в сопрягающих мембранах. Однонаправленный перенос ионов в направлении электрохимического градиента путем свободной диффузии или с помощью специфического переносчика - унипорт. В последнем случае унипорт идентичен облегченной диффузии. Более сложная ситуация возникает в том случае, когда два вещества взаимодействуют с одним и тем же переносчиком. Этот случай симпорт подразумевает обязательное сопряжение потоков двух веществ в процессе переноса их через мембрану в одном направлении. Симпорт двух ионов электрически нейтрален, но осмотический баланс при этом нарушается. Следует подчеркнуть, что при симпорте электрохимический градиент, определяющий движение одного из ионов (например иона натрия или иона водорода) может быть причиной движения другого вещества (например молекул сазара или аминокислот), которое переносится общим переносчиком. Третий вид ионного сопряжения - актипорт - характеризует ситуацию, в которой два иона одного знака уравновешиваются через мембрану таким образом, что перенос одного из них требует переноса другого в противоположном направлении. Перенос в целом электронейтрален и осмотически уравновешен. Это вид переноса идентичен обменной диффузии.

Менее изучены два особых вида проницаемости - фагоцитоза - процесса захвата и поглощения крупных твердых частиц, и пиноцитоза - процесса захвата и поглощения частью клеточной поверхности окружающей жидкости с растворенными в ней веществами.

Все виды проницаемости в той или иной степени характерны для многоклеточных тканей мембран стенок кровеносных сосудов, эпителия почек, слизистой кишечника и желудка.

Для изучения пассивной и активной проницаемости используются различные кинетические методы. Наибольшее распространение получил метод меченных атомов.

Широко используются при исследовании проницаемости витальные красители. Сущность метода заключается в наблюдении с помощью микроскопа скорости проникновения молекул красителя внутрь клетки. В настоящее время широко используются флоурасцентные метки и среди них флуоресцин натрия, хлортетрациклин и др. Большая заслуга в развитии метода витальных красителей принадлежит Д.Н.Насонову, В.Я.Александрову и А.С.Трошину.

Осмотические свойства клеток и субклеточных частиц позволяет использовать это качество для изучения проницаемости воды и растворимых в ней веществ. Сущность осмотического метода заключается в том, что с помощью микроскопа или измерения светорассеяния суспензии частиц наблюдают изменение объема частиц в зависимости от тоничности окружающего раствора.

Все более широко для изучения клеточных мембран применяют потенциометрические методы. Широкий набор ионоспецифичных электродов позволяет исследовать кинетику транспорта многих ионов - K+, Na+, Ca2+, H+, CI- и др., а также органических ионов - ацетата, салицилатов и др.

ПЕРВИЧНОЕ ДЕЙСТВИЕ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ

И ВОЛН НА ТКАНИ ОРГАНИЗМА.

Основные методы и аппаратура для

высокочастотной электротерапии.

В физиотерапии имеется большая группа методов, в основе ко-

торых лежат электромагнитные колебания и волны.

Первичное действие переменного тока и электромагнитного по-

ля на биологические объекты в основном заключается в периодичес-

ком смещении ионов растворов электролитов и изменении поляриза-

ции диэлектриков. При частотах приблизительно более 200-500 кГц

смещение ионов становится соизмеримым с их смещением в результа-

те молекулярно-теплового движения, поэтому ток или электромаг-

нитная волна не будет вызывать раздражающего действия. Основным

первичным эффектом в этом случае является тепловое воздействие,

вследствие трения между заряженными частицами при колебательном

движении.

Электромагнитные колебания и волны, применяемые в медицинс-

кой практике, условно подразделяются на несколько диапазонов:

низкочастотные (НЧ) до 20 Гц

звуковой частоты (ЗЧ) 20 - 20 кГц

ультразвукочастотные (УЗЧ) 20 - 200 кГц

высокочастотные (ВЧ) 0,2 - 30 мГц

ультравысокочастотные (УВЧ) 30 - 300 мГц

сверхвысокочастотные (СВЧ) свыше 300 мГц

крайневысокочастотные (КВЧ) > 1000 мГц.

Так как специфическое действие тока, особенно при небольших

частотах, определяется формой импульсов, то используют токи с

разной временной зависимостью.

1. ИМПУЛЬСНЫЕ ТОКИ НИЗКОЙ И ЗВУКОВОЙ ЧАСТОТЫ.

Это токи с импульсами прямоугольной формы

(t = 0,1 - мс; 10 - 100 Гц) - для лечения

электросном.

Ток с импульсами треугольной формы - те-

танизирующий (фарадический) ток (t = 1 -

5 мс, частота 100 Гц), а также ток экспо-

ненциальной формы (t = 3-60 мс, 8-80 Гц)-

применяют для возбуждения мышц.

Кроме того, для различных видов электро-

лечения используют диадинамические токи,

предложенные Бернаром.

2. ТОКИ ВЫСОКОЙ ЧАСТОТЫ.

Эти токи применяются для прогревания органов в хирургии для

рассечения тканей (диатермотомия) и прижигания или удаления тка-

ней (диатермокоагуляция).

Пропускание тока высокой частоты через ткань используют в

физиотерапевтических процедурах, называемых диатермией и местной

дарсонвализацией.

При диатермии применяют ток частоты около одного мегагерца

со слабозатухающими колебаниями, напряжение 100 - 150 В, сила

тока несколько ампер. Так как наибольшим удельным сопротивлением

обладают кожа, жир, кости, мышцы, то они и прогреваются сильнее.

Наименьшее нагревание у органов, богатых кровью или лимфой, -

легкие, печень, лимфатические узлы. Недостаток диатермии - боль-

шое количество теплоты непродуктивно выделяющееся в слое кожи и

подкожной клетчатке.

I = j * S, где j - плотность тока

Для местной дарсонвализации применяют ток частотой 100 -

400 кГц, напряжение его - десятки киловольт, а сила тока неболь-

шая 10 - 15 мА.

3. ПЕРЕМЕННОЕ МАГНИТНОЕ ПОЛЕ.

В тканях, находящихся в таком поле, возникают вихревые то-

ки. Этот метод физиотерапии называют индуктотермией. Ткань поме-

щают в катушку с переменным током.

При индуктотермии количество теплоты, выделяющееся в тка-

нях, пропорционально квадратам частоты и индукции переменного

магнитного поля и обратно пропорционально удельному сопротивле-

нию.

*************************

Поэтому сильнее будут нагреваться ткани, богатые сосудами, нап-

ример, мышцы чем такие ткани, как жир. Обычно при индуктотермии

применяют местное воздействие переменного магнитного поля, ис-

пользуя спирали или плоские свернутые кабели.

4.ПЕРЕМЕННОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ.

В тканях, находящихся в таком поле, возникают токи смещения

и токи проводимости. Обычно для этой цепи употребляют электри-

ческие поля ультравысокой частоты, поэтому соответствующий физи-

отерапевтический метод получил название УВЧ-терапии (в РБ ис-

пользуют частоту 40,68 мГц).

5. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ.

Физиотерапевтический метод, называемый микроволновой тера-

пией, основан на применении электромагнитных волн СВЧ диапазона

(сантиметровый и дециметровый).

При попадании на тело электромагнитной волны в нем возника-

ют токи проводимости и смещения и выделяется количество теплоты.

Большое значение имеют токи смещения, обусловленные переориента-

цией молекул воды. В связи с этим наибольшее поглощение энергии

микроволн происходит в таких тканях, как мышцы и кровь, а в

костной и жировой тканях меньше, они меньше и нагреваются. Ис-

пользуемые при микроволновой терапии электромагнитные волны пог-

лощаются слоем ткани толщиной в несколько сантиметров.

(Луч - 58, частота - 2375 мГц, * = 12,6 см).

Физиотерапевтические аппараты высокочастотной

терапии. Аппараты индуктотермии и УВЧ-терапии.

Терапевтический контур.

К физиотерапевтическим аппаратам высокочастотной терапии

относятся аппараты электрохирургии (рассмотрим их ниже), диатер-

мии, местной дарсонвализации, индуктотермии, УВЧ-терапии, микро-

волновой терапии (также будут рассмотрены ниже).

Общая схема аппаратов индуктотермии и УВЧ-терапии приведена

на рисунке.

Хотя генератор собран по двух-

тактной схеме, для простоты

показан однотактный генератор.

В аппарате УВЧ-терапии дискообразные электроды, подводимые

к больному, входят в состав контура пациента, называемого тера-

певтическим контуром. Для безопасности больного терапевтический

контур индуктивно связан с контуром генератора, так как индук-

тивная связь исключает возможность случайного попадания больного

под высокое напряжение, которое практически всегда имеется в ге-

нераторах колебаний. Терапевтический контур применяют и в других

генераторах, используемых для лечения.

Аппараты микроволновой терапии.

Аппарат микроволновой терапии - генератор СВЧ колебаний,

работающий на особых электронных лампах, называемых магнетрона-

ми. Направленный поток волн образуется с помощью специального

излучателя, называемого волноводом.

Волновод - устройство для передачи ультразвуковых волн на-

чиная с дециметрового диапазона - представляет собой металличес-

кую трубу (или короб) определенной формы и размеров, заполненную

диэлектриком (в частности, воздухом). Волноводом может служить

также стержень соответствующих размеров из твердого диэлектрика.

Волна, распространяющаяся внутри волновода, не выходит за его

пределы. Возбуждается волна с помощью штыря или петли, располо-

женной в начале волновода и соединенной коаксиальным кабелем с

выводами генератора СВЧ колебаний.

Для микроволновой терапии используются аппараты "Луч - 2",

"Луч - 58" и другие.

Аппаратура электрохирургии.

Имеются генераторы трех видов: ламповые, полупроводниковые

и искровые. Форма сигнала:

Применяются частоты от 300 - 400 кГц до 5 мГц (будут до 40 мГц).

Мощности: в офтальмологии, например, несколько ватт до 1 кВт

(рекомендуется МЭК не более 400 Вт).

Виды электрохирургии:

Виды

ЭХ

монополярная биполярная

монополярная

без пассивного

электрода

Г Г Г

Цепь пациента:

активный электрод

Г

пассивный

Активные электроды изготавливаются из меди (раньше из нер-

жавеющей стали).

Форма активных электродов:

игольчатый

Аппарат электрохирургии высокочастотный.

Принцип действия аппарата основан на воздействии токов вы-

сокой частоты на мягкие биологические ткани.

При протекании тока через мягкие ткани осуществляется их

резание и коагуляция кровеносных сосудов. Резание тканей произ-

водится синусоидальным немодулированным током частотой 1,76 мГц.

При касании электродом мягкой ткани, вследствие высокой плотнос-

ти входного тока, происходит мгновенный нагрев клеток и испаре-

ние внутриклеточной жидкости, что приводит к разрыву клеток в

зоне касания, таким образом осуществляется разрез ткани.

При коагуляции кровеносных сосудов используется как синусо-

идальный (режим "Резание"), так и амплитудномодулированный ток

(режим "Коагуляция") той же частоты 1,76 мГц. Применяется тепло-

вое действие тока меньшей, чем при резании тканей, плотности.

Вблизи электрода происходит обезвоживание клеток и обеспечивает-

ся коагуляция сосудов.

Генераторы синусоидальных колебаний

с самовозбуждением.

Для возбуждения незатухающих электрических колебаний приме-

няют автоколебательные системы (работающие за счет энергии ис-

точника постоянного или выпрямленного напряжения), называемые

генераторами. Рассмотрим ламповый генератор:

Существо протекающих в генераторе процессов заключается в

том, что колебательный контур воздействует на анодную цепь лам-

пы, которая в свою очередь оказывает действие на контур. Такой

способ получения колебаний называется обратной связью. Соответс-

твенно катушку L называют катушкой обратной связи. Источником

энергии является анодная батарея. В качестве "клапана", пропус-

кающего в контур энергию в нужный момент, используют триод либо

транзистор.

В момент включения схемы в колебательном контуре возникают

малые случайные колебания. За счет индуктивной связи эти колеба-

ния передаются на сетку триода и усиливаются. Усиленные лампой

колебания через анодную цепь попадают в контур в резонанс с те-

ми, которые там уже существуют и амплитуда колебаний возрастает.

Так будет лишь в случае определенного фазового соотношения между

колебаниями в контуре и изменением напряжения сетки. Обратная

связь должна быть положительной.

Схема генерирует колебания, частота которых равна частоте

собственных колебаний контура Lк Cк. Изменять эту частоту можно,

меняя параметры контура - C и L. Удобнее Cк. Элементы Rc Cc слу-

жат для создания на сетке напряжения смещения в цепях правильно-

го режима работы лампы.

Рассмотрим работу генератора при установившихся колебаниях,

когда активное сопротивление колебательного контура = 0, то есть

контур идеальный. В идеальном колебательном контуре при возбуж-

денных колебаниях на пластинах конденсатора образуется перемен-

ное напряжение Uк, поддерживающее ток Jк колебательного контура

(рисунок). Ток Jк запаздывающий по фазе относительно напряжения

Uк на L п/2, наводит в катушке связи э.д.с. индукции Eк, которая

в свою очередь запаздывает по фазе относительно тока Jк еще на L

п/2 и, следовательно, по отношению к напряжению Uк находится в

противофазе (пунктир). Однако вследствие обусловленного выше по-

рядка подключения концов катушки Loc к сетке и катоду лампы фаза

э.д.с. индукции изменяется на обратную и потенциал Uс на сетке

лампы оказывается в фазе с напряжением Uк.

Потенциал Uс на сетке вызывает соответствующие пульсации

анодного тока, который может рассматриваться как состоящий из

постоянной Jао и Jа_ переменной составляющих. Последняя имеет

такую же частоту, как и напряжение Uк и находится с ним в фазе.

Для получения незатухающих коле-

баний в автогенераторе необходимо:

1) условие выполнения фазовых соотношений,

2) чтобы приток энергии к контуру

за некоторое время был больше по-

терь энергии в контуре.

Подобный генератор может быть выполнен на полупроводниковом

триоде. Принцип его работы аналогичен.

На практике колебательный контур включается в цепь сетки.

Активное сопротивление нагрузки вместе с катушкой связи в гене-

раторе включено в анодную цепь лампы (рисунок).

В подобном генераторе в колеба-

тельном контуре почти не происхо-

дит потерь энергиии ток Jк в нем

является только возбудителем пере-

менного потенциала на сетке лампы,

к которой он подключен.

Потенциал изменяется в фазе с напряжением Uс конденсатора

контура. Анодный ток проходит по катушке K, которая связана ин-

дуктивно, с одной стороны, с катушкой L колебательного контура

(для поддержания колебаний в нем), с другой стороны, с катушкой

Lн нагрузочного контура, на сопротивлении Rн которого происходят

основные потери энергии. Эти потери компенсируются непосредс-

твенно переменной составляющей анодного тока, которая питает

этот контур путем индукции между катушками K и Lн.

Двухтактный генератор.

Если требуется значительная мощность колебаний, то применя-

ется двухтактный генератор (рисунок).

В нем к колебательному контуру

подключены две лампы Л1 и Л2,

анодные токи которых проходят

каждый через соответствующую по-

ловину катушки контура. Для этого

положительный полюс источника пи-

тания включается к средней точке

катушки, отрицательный - к общей

точке катодов ламп. Катушки К1 и К2 связи соединены вместе, и их

средняя точка через сопротивление Rс (смещения) подключена к об-

щей точке катодов ламп. Активное сопротивление контура Rк1 и Rк2

считаем включенными последовательно с каждой из половин катушки

L контура.

Принципиальная схема двухтактного генератора напоминает

схему двухтактного усилителя.

Самовозбуждение колебаний в генераторе основано на практи-

чески неизбежной несимметрии электрических параметров схемы, в

связи с чем в начальный момент при включении источника питания

токи, протекающие по каждой из половин катушки контура, не будут

абсолютно одинаковы. Это обусловливает образование на концах ка-

тушки L хотя бы небольшой разности потенциалов, которая послужит

для начальной зарядки конденсатора C контура. Затем в процессе

колебаний это напряжение быстро возрастает до нормальной величи-

ны.

Рассмотрим рабочий процесс при уже возбужденных колебаниях.

Ток Jк колебательного процесса (реактивная составляющая тока в

контуре) через катушки связи индуктирует на сетках ламп перемен-

ные потенциалы Uс1 и Uс2, которые обусловливают образование пе-

ременных составляющих Jа1_ и Jа2_ анодных токов ламп (активная

составляющая тока в контуре). Колебания потенциалов Uс1 и Uс2, а

следовательно, токов Jа1_, Jа2_ и напряжений Ur1_, Ur2_ на соп-

ротивлениях Rк1 и Rк2 находятся в противофазе, причем токи Jа1_

и Jа2_ протекают по сопротивлению Rк1 и Rк2 в противоположных

направлениях, поэтому напряжения Ur1 и Ur2 образуют совместно

общее напряжение Uк, которое в данном случае и поддерживает ко-

лебания в контуре. Токи Jа1_ и Jа2_ компенсируют потери энергии

на активном сопротивлении контура. В результате в колебательном

контуре реализуется удвоенная мощность сравнительно с однотакт-

ным генератором на такой же лампе.

Генераторы релаксационных

электрических колебаний.

Электрические колебания, резко отличающиеся по форме от си-

нусоидальных, называются релаксационными.

Простейшее устройство для получения релаксационных электри-

ческих колебаний состоит из газоразрядной лампы и включенного

параллельно ей конденсатора С, который через сопротивление подк-

лючены к источнику постоянного напряжения.

Газоразрядная лампа характеризуется тем, что она зажигается

при некотором относительно высоком напряжении Uзаж. и гаснет при

значительно меньшем Uгаш. В данном случае U должно быть больше

Uзаж., тогда по мере заряда конденсатора напряжение Uс на нем

постепенно нарастает до значения Uзаж., в этот момент лампа за-

жигается, ее сопротивление резко падает, конденсатор быстро раз-

ряжается через лампу. Когда напряжение на нем снизится до Uгаш.,

лампа погаснет, сопротивление ее вновь возрастет, конденсатор

будет снова заряжаться и т.д. График напряжения на зажимах лампы

имеет пилообразный характер, изменяясь в переделах от U1 = Uзаж.

до U2 = Uгаш. Период колебаний обусловлен в основном постоянной

времени t = RC заряда конденсатора, а также соотношением между

Uзаж. и Uгаш. газоразрядный лампы.

Генератор развертки в осциллографе.

Подобное пилообразное напряжение используется для развертки

изображения в электроннолучевой трубке. Для возможности регули-

ровки частоты колебаний в генераторе развертки применяется газо-

наполненный триод - тиратрон. В тиратроне напряжение зажигания,

а следовательно, и частота пилообразных колебаний регулируется

путем изменения отрицательного потенциала смещения, которое по-

дается на сетку лампы.

Генератор электрических колебаний составляет основу многих

физиотерапевтических аппаратов. Существенной особенностью этих

аппаратов является отдельный колебательный контур, к которому

подключаются электроды, накладываемые на больного. Этот контур

называют терапевтическим.

Терапевтический контур в целях безопасности больного индук-

тивно связан с контуром генератора, так как индуктивная связь

исключает возможность случайного попадания больного под высокое

постоянное напряжение, которое практически всегда имеется в ге-

нераторах колебаний.

В связи с тем, что в терапевтический контур включаются раз-

личные объекты, например различные части тела больного, и его

электрические параметры могут соответственно изменяться, этот

контур должен подстраиваться в резонанс при каждой процедуре.

Для этого в нем имеется конденсатор переменной ёмкости.

Понятие о триггере и его использовании.

Триггеры относятся к логическим элементам ЭЦВМ. По схеме и

принципу действия триггер в значительной мере подобен мультивиб-

ратору, но отличается от него тем, что оба его крайних состояния

являются устойчивыми и переход из одного в другое (соприкоснове-

ние триггера) происходит только под действием внешних импульсов,

подаваемых на базу одного из транзисторов.

Триггер имеет два входа S и R и два выхода a и a, условное

обозначение его на схеме:

Для сравнения (опрокидывания) триггера надо на его вход "S"

подать положительный импульс (при транзисторах "р-n-р").

Триггеры используются в регистрах, дешифраторах и счетчиках.

ПЕРЕМЕННЫЙ ТОК.

Переменным током называют ток, периодически изменяющийся по величине и по направлению.

Переменный ток можно рассматривать как вынужденные электромагнитные (электрические колебания).

Наиболее распространенным является синусоидальный переменный ток, мгновенные значения которого изменяются во времени по закону синуса (косинуса) или по закону простого (гармонического)

колебания.

ф = B S0,

где ф - магнитный поток; В - магнитная индукция.

(закон Фарадея или закон электромагнитной индукции);

,

где .

Соответственно, мгновенные значения напряжения "U" или тока

"I" во внешней цепи генератора:

U = Um sint или I = Im sint,

где Um и Im - максимальные (амплитудные) значения соответственно напряжения и тока, = 2 - круговая частота переменного напряжения или тока.

Кроме мгновенных и амплитудных значений для характеристики переменного тока пользуются эффективными или действующими (средними квадратичными за период) значениями напряжения и тока, которые обычно и указываются на шкале измерительных приборов. Для синусоидального переменного тока:

Uэф = Iэф =

Назовем действующей или эффективной силой переменного тока Iэф такой постоянный ток, который выделяет в цепи с сопротивле-нием R количество теплоты, одинаковое с переменным током:

Pср = P, I2эфR ;

средняя мощность Pср = UэфIэф cos.

Переменный ток - это также упорядоченное (направленное) движение носителей заряда, однако оно имеет колебательный харак-тер. Электрическое поле изменяет свое направление на противопо-ложное через каждую половину периода.

Соответственно изменяется и направление перемещения зарядов в проводниках. Величина перемещения весьма мала и зависит от частоты переменного тока. Например, при средней скорости дрейфа электронов в металлическом проводнике порядка 0,1 см/сек и при частоте тока 50 Гц смещение электронов имеет порядок 0,001 см. Для ионов в растворе электролита эта величина еще меньше. При достаточно высокой частоте это смещение становится та-кого же порядка, как и смещение зарядов в тепловом движении. Од-нако колебания зарядов, образующих ток, от последнего отличаютсяупорядоченным (направленным) характером.

Переменный ток частотой 4:-5 кГц применяется, подобно им-пульсным токам, для цепей электростимуляции, а частотой 20-30кГц(при малых силах тока) - при измерении, например, полного сопро-тивления тканейорганизма. Переменный ток 200 кГц и выше даже призначительных силах тока раздражающего действия на ткани организ-ма не оказывает, но тепловой эффект тока при этом сохраняется, поэтому высокочастотные токи применяются для тепловых лечебных процедур - прогревания глубоко лежащих тканей организма.

Колебательное движение зарядов вносит ряд отличий в явле-ния, происходящие в цепях переменного тока по сравнению с постоянным. Например, конденсатор является проводником в цепи переменного тока; в цепи, содержащей индуктивность, постоянно действует э.д.с. самоиндукции, которая имеет также переменный характер; в цепи с раствором электролита не происходит электрической поляризации и потому сопротивление такой цепи (а следовательно и тканей организма) при прочих равных условиях значительно меньше,чем при постоянном токе, и т.д.

Цепь переменного тока, содержащая омическое сопротивление R не представляет особенностей. В ней выполняется закон Ома, который может быть применен как к мгновенным, так и эффективным значениям напряжения и тока: .

Сопротивление R в цепи переменного тока называется активным, так как при прохождении тока в нем происходит необратимая потеря энергии, которая переходит в теплоту.

Колебания напряжения и тока в цепи с чисто активным сопротивлением находятся в фазе.

Рассмотрим явления, происходящие в цепи переменного тока с индуктивностью. Подключим к переменному напряжению U = Um sint катушку с индуктивностью "L", активным сопротивлением которой за малостью можно пренебречь.

В цепи образуется переменный ток и в катушке возникает э.д.с. самоиндукции, равная. Сила тока "I" в цепи определяется из условия: ,(так как сопротивлением "R" пренебрегаем) или .

Преобразуем или.

Интегрируем это уравнение ,

где .

Постоянная интегрирования принимается С = 0, так как не имеет постоянной составляющей. Уравнение показывает, что ток в цепи, подобно напряжению, имеет синусоидальный характер, но по фазе запаздывает на угол .

Сопоставляя максимальное значение тока с формулой закона Ома, видим, что в цепи с индуктивностью значение сопротивления имеет величина "L", которая обозначается XL.

Величина XL = L = 2L называется индуктивным сопротивлением цепи и измеряется в Омах, при подстановке L - в Генри и - в Герцах.

Физический смысл индуктивного сопротивления состоит в том, что оно учитывает влияние на силу тока в цепи э.д.с. самоиндукции, противодействующей приложенному напряжению, и поэтому зависит от тех же величин, что и э.д.с. самоиндукции: индуктивности "L" и частоты = 2, обусловливающей скорость изменения мгновенных значений тока.

Э.д.с. самоиндукции, противодействующая изменению тока в цепи, вызывает запаздывание колебаний тока, по отношению к коле-баниям напряжения. При чисто индуктивной цепи запаздывание про-исходит на угол, равный .

Графики напряжения и тока в цепи с индуктивностью показаны на рисунке. На векторной диаграмме показано фазовое соотношение векторов амплитуд тока IL и напряжения UL: ток отстает на угол (углы отсчитываются по направлению против часовой стрелки).

В цепи, содержащей индуктивное и активное сопротивление, угол запаздывания тока по фазе будет меньше и в зависимости от соотношения между ними может иметь значения в пределах от 0 до .

В чисто индуктивном сопротивлении потерь энергии не проис-ходит, в связи с чем оно называется реактивным.

Определим характер переменного тока "I" в цепи с конденса-тором, к которой приложено переменное напряжение U = Um sint.

Мгновенные значения заряда "q" на пластинах конденсатора q = cU = cUm sin t.

Дифференцируем

где Im = cUm. Это уравнение показывает, что ток в цепи, подобно напряжению, имеет синусоидальный характер (смотри рисунок), при-чем упреждает напряжение по фазе на угол .

Сопоставляя максимальное значение тока Im = cUm с формулой закона Ома, видим, что в цепи с емкостью значение сопротивления имеет величина , которая обозначаетсяXc.

Величина называется емкостным cопротивлени-ем цепи и измеряется в Омах, еслис - в Фарадах и - в Герцах.

Физический смысл емкостного сопротивления можно объяснить так: ток "I" в цепи конденсатора пропорционален заряду "q" и частоте "" смены процессов заряда и разряда конденсатора. Заряд "q" при данном приложенном напряжении "U" пропорционален емкости "с" конденсатора, а = 2. Поэтому ток "I" в цепи пропорционален произведению "c", которое, следовательно, имеет значение проводимости цепи. Величина, ей обратная, то есть , имеет значение сопротивления цепи.

В цепи, содержащей емкость и активное сопротивление, угол сдвига фазы тока будет меньше и в зависимости от соотношения между ними может иметь значения от 0 до 900.

В чисто емкостном сопротивлении потерь энергии не происхо-дит, в связи с чем оно называется реактивным.

Имеется цепь из включенных последовательно сопротивлений: активного "R", индуктивного "XL" и емкостного "Xc", к которой приложено переменное напряжение "U". В цепи образуется общий ток "I", а приложенное напряжение "U" распределяется между участками цепи:

UR = IR; UL = IXL и Uc = Ixc .

Вследствие наличия разности фаз между напряжениями UL и Uc и током I (UR находится в фазе с током) эти напряжения должны складываться между собой векторно (геометрически), обра- зуя в сумме приложенное напряжение "U".

Напряжения UL и Uc имеют разность фаз с током I, равную , но противоположную по знаку, то есть они находятся между собой в противофазе и, следовательно, могут складываться алгебраически:

Ux = UL - Uc (обычно UL > Uc).

Напряжение UR находится в фазе с током I и, следовательно, имеет разность фаз с напряжениемUx = UL - Uc. Тогда напряжение U как гипотеза прямоугольного треугольника, катетами которого являются UR и Ux, и вычисляются по формуле:

,

где ,

называется полным сопротивлением (или импедансом) цепи.

Соотношение называется обобщенным законом Ома для цепи переменного тока.

Разность фаз между приложенным напряжением U и током I определяется углом y между векторами U и UR.

Аналогично можно построить и треугольник сопротивлений. В нём .

Из треугольника имеем .

Путем аналогичных рассуждений для цепи из параллельно включенных активного, индуктивного и емкостного сопротивлений можно получить следующее соотношение:

Резонанс в цепи переменного тока.

Из формулы для полного сопротивления "Z" контура, в котором последовательно включены R,L, и C, следует, что чем ближе по величине XL и Xc (то есть L и 1c), тем меньше полное сопротивление "Z" и, следовательно, тем больше ток в цепи при том же приложенном напряжении "U".

При XL = Xc или L = 1c полное сопротивление Z = R и ток достигает наибольшего значения, обусловленного только активным сопротивлением цепи: Iрез =.

Это явление называют электрическим резонансом. Условие резонанса может быть обеспечено путем подбора соответствующих L и C при заданной частоте или, наоборот, при заданных L и C путем соответствующей частоты "", которая называется резонансной (или собственной частотой электрической цепи. Из условия резL =1рез c cледует 2рез = и рез = , соответственнорез = .

На рисунке приведен график резонансной кривой, показывающей характер изменения тока при изменении частоты питающего напряже-ния вблизи от резонансной. Чем меньше активное сопротивление R цепи, тем острее резонанс (кривая А при малом R, кривая Б при значительном R).

Резонанс в последовательной цепи называют резонансом напряжений, так как при этом происходит взаимная компенсация напряжений UL и Uc, каждое из которых порознь может значительно превышать по величине приложенное напряжение "U" к цепи.

Резонанс может иметь место также в цепи из параллельно включенных активного, индуктивного и емкостного сопротивлений, к которой приложено переменное напряжение "U". Это явление называется резонансом токов и представляет особый интерес, так как имеет место в генераторе электрических колебаний.

Импеданс тканей организма.

Эквивалентная электрическая схема ткани.

Физические основы реографии.

Ткани организма проводят не только постоянный, но и переменный ток. В организме нет таких систем, которые были бы подобны катушкам индуктивности, поэтому индуктивность его равна нулю.

Биологические клетки и, следовательно, весь организм обладают емкостными свойствами, в связи с этим импеданс тканей организма определяется только омическим и емкостным сопротивлениями. Наличие в биологических системах емкостных элементов подтверждается тем, что ток опережает по фазе приложенное напряжение.

Приведем некоторые значения угла сдвига фаз (-), полученные при частоте 1 кГц для разных биологических объектов:

кожа человека, лягушки - 550;

нерв лягушки - 640;

мышцы кролика - 650.

При последовательном соединении сопротивления R и емкости С импеданс:

а для угла разности фаз имеем:

;

при параллельном:

Омические и емкостные свойства клеток можно моделировать, используя эквивалентные электрические схемы. Рассмотрим некоторые из них.

Эта схема неудовлетворительна, так как содержит бесконечно большое сопротивление постоянному току и поэтому при низких частотах дает существенные отклонения опытных значений импеданса от расчетных.

В этой схеме при увеличении частоты емкостное сопротивление стремится к нулю, поэтому импеданс системы также стремится к нулю. Это противоречит опыту: у живых объектов импеданс уменьшается по мере увеличения частоты только до определенного значения. Для живых клеток характерно более сложное сочетание параллельного и последовательного соединений элементов.

Импеданс тканей организма определяется их физиологическим состоянием. Так, при кровенаполнении сосудов импеданс изменяется в зависимости от состояния сердечно-сосудистой деятельности. Диагностический метод, основанный на регистрации изменения импеданса тканей в процессе сердечной деятельности, называют реогра фией (импедансплетизмография).

С помощью этого метода получают реограммы головного мозга (реоэнцефалограмма), сердца (реокардиограмма), магистральных сосудов, легких, печени и конечностей. Измерения обычно проводят на частотах 20  30 кГц по мостовой схеме.

Реограф. Реоэнцефалограф.

Реограф -электронное устройство, предназначенное для преобразования колебаний импеданса живой ткани или его составляющих, обусловленных пульсовыми изменениями кровенаполнения в пропорциональный электрический сигнал.

Принцип работы реографа заключается в следующем: от генератора высокой частоты реографа с помощью электродов через исследуемый орган пропускается ток высокой частоты. При этом на исследуемом участке (органе) возникает падение напряжения. Изменения кровенаполнения в исследуемом органе приводят к изменениям его импеданса и пропорциональным изменениям амплитуды высокочастотного напряжения. После усиления с помощью детектора и фильтров выделяется низкочастотная составляющая, представляющая собой реографический сигнал (реограмму) - рисунок.

(Фильтр и усилитель низ-

кой частоты (УНЧ))

Используется переменный ток с частотами 30-300 кГц, величина тока составляет 1-5 мА. Реоплетизмограф РПГ-202 -  = 40 кГц, I = 2 мА.

Реоэнцефалография - метод исследования мозгового кровообращения, основанный на измерении и записи пульсовых колебаний полного электрического сопротивления (импеданса) головного мозга при пропускании через него тока высокой частоты, слабого по силе и напряжению.

Реоэнцефалограф - прибор, предназначенный для этих целей.

Сложение и разложение токов.

Электрический фильтр.

В электрических цепях нередко встречается явление сложения и разложения токов. Простейшим примером может служить разветвленная цепь постоянного или переменного тока, в которой общий ток разделяется на токи, протекающие по разветвлениям; затем эти токи складываются в общий ток неразветвленной цепи.

Может происходить также сложение токов различного характера, например, постоянного и переменного (получается пульсирующий ток), переменных токов различной частоты (получается ток сложной формы) и так далее. Очевидно, что возможно и обратное явление, например, разложение пульсирующего тока на постоянную и переменную составляющие, переменного тока сложной формы на гармонические составляющие и т.п.

При этом должно выполняться основное правило: в любой момент времени мгновенное значение общего тока должно равняться сумме мгновенных значенией составляющих токов (с учетом фазовых соотношений) и наоборот.

Разложение сложных токов в электрических цепях осуществляется с помощью устройств, содержащих разветвленную цепь с индуктивными и емкостными сопротивлениями и называемых электрическими фильтрами.

Действие фильтров основано на том, что сопротивление его отдельных ветвей зависит от частоты проходящего по ним тока, причем для индуктивных и емкостных сопротивлений эта зависимость противоположная. Поэтому ток более низкой частоты (включая и постоянный) проходит преимущественно по индуктивным, а ток более высокой частоты - по емкостным ветвям фильтра.

В различных приборах и аппаратах, например гармонических анализаторах биопотенциалов, фонокардиографах и других, применяются фильтры, позволяющие выделять переменные токи различных частот или выделять из тока сложной формы гармонические составляющие определенных частот. Например, фильтр такой как на рисунке пропускает только токи низких частот (от  = 0 до  = 0), так как более высокие частоты ослабляются индуктивным и шунтируются емкостным сопротивлениями фильтра.

Если на выходные клеммы подать пульсирующее напряжение "Uвх", то

постоянная составляющая тока через емкость "С" не пойдет, так как конденсатор обладает бесконечно большим сопротивлением постоянному току. При надлежащем выборе "L" индуктивное сопротивле ние переменному току может быть сделано значительным. В результате такой фильтр пропустит на выход постоянную составляющую входного напряжения.

Фильтром, изображенным на рисунке можно выделить переменную составляющую тока. Он пропускает только токи высоких частот (от  = 0 до = ), низкие частоты ослабляются емкостным и шунтируются индуктивным сопротивлением фильтра.

На рисунке показаны принципиальные схемы простейших полосовых фильтров, то есть фильтров пропускающих (а) или, наоборот, не пропускающих (б) переменный ток частотой в заданных относительно узких пределах: от  = 1 до  = 2.

Фильтры состоят из настроенных в резонанс контуров, сопротивление которых при частотах, близких к резонансной, или очень мало (последовательный контур), или очень велико (параллельный контур. Поэтому в первом случае ток соответствующих частот проходит почти без ослабления (остальные частоты ослабляются последовательным и шунтируются параллельным контуром), во втором случае - наоборот, ослабляются и шунтируются токи частоты, на которую настроены контуры фильтра.

Оценка жизнеспособности и патологических изменений тканей и органов по частотной

зависимости импеданса и углу сдвига фаз между током и напряжением.

Изменение величины электрического импеданса применяется для характеристики электрических свойств тканей, органов, отдельных клеток. Импеданс биологических тканей уменьшается при увеличении частоты приложенного электрического поля, что связано с наличием емкотной составляющей импеданса, обусловленной в основном явлением поляризации.

Импеданс биологических тканей изменяется в зависимости от их функционального состояния. Слабый переменный ток, проходящий через объект при измерении, не вызывает повреждения ткани, поэтому наблюдаемые изменения в нем при тех или иных условиях можно связать со структурными и ионными изменениями в ткани. Излучение составляющих электрического импеданса взвеси клеток позволяет определить электрические параметры как самих клеток, так и их поверхностных мембран, судить об изменении их проницаемости.

Измерение импеданса на высоких частотах (выше 1 мГц) позволяет оценивать суммарную концентрацию свободных электролитов в клетках и тканях (кондуктометрия). Измерение импеданса позволяет также регистрировать изменения физико-химической структуры живых тканей в норме и патологии. Поэтому этот метод можно использовать для изучения динамики изменений, происходящих при различных заболеваниях и травмах, а также для оценки эффективности их лечения.

Поскольку кровь обладает более высокой электропроводностью, чем другие биологические ткани, то в момент систолического подъёма пульсовой волны электрическое сопротивление тканей уменьшается, а в период диастолического спуска увеличивается.

Возникающие по закону Ома перемены импеданса вызывают изменения тока в цепи. Усиленные и графически зарегистрированные, эти изменения образуют кривую, называемую реограммой.

Таким образом, реографическая кривая отражает колебания гемодинамики, происходящие в органах и тканях во время сердечного сокращения.