
- •Вопросы для зачета по молекулярной биологии
- •История открытия и изучения нуклеиновых кислот.
- •Доказательства генетической роли днк.
- •Методы изучения нуклеиновых кислот.
- •Строение днк. Альтернативные формы двойной спирали днк.
- •Типы рнк, их распространенность и локализация в клетке. Строение рнк на примере тРнк.
- •Денатурация и ренатурация нуклеиновых кислот. Гибридизация рнк и днк.
- •Функции нуклеиновых кислот.
- •Механизм репликации по Уотсону и Крику. Эксперимент Мезельсона и Сталя.
- •Модели репликации.
- •События в репликативной вилке.
- •Ферменты репликации.
- •Особенности репликации днк у про- и эукариот.
- •Репликация теломерных участков. Теломеразная теория старения. Теломераза и онкогенез.
- •Репликация рнк.
- •Спонтанные и индуцированные повреждения днк.
- •Прямая коррекция поврежденной днк.
- •Sos репарация.
- •Световая репарация.
- •Эксцизионная репарация.
- •Рекомбинативная репарация.
- •Значение репарации.
- •Апоптоз.
- •Кроссинговер, его механизм и биологическое значение.
- •Значение рекомбинации.
- •Синтез рнк на днк- матрице. Общие принципы транскрипции.
- •Организация и функции промоторов.
- •Ферменты транскрипции.
- •Особенности транскрипции у про- и эукариот.
- •Ингибиторы транскрипции.
- •Интроны и экзоны. Основные характеристики интронов.
- •Процессинг рнк эукариот и прокариот.
- •Альтернативный сплайсинг.
- •Теории мозаичного строения генов эукариот.
- •Обратная транскрипция, ее медицинское и хозяйственное значение.
- •История открытия и свойства генетического код.
- •Трансляция у прокариот.
- •Трансляция у эукариот.
- •Репрограммирование трансляции.
- •Ингибиторы трансляции.
- •Строение и функции рибосом у про- и эукариот.
-
Значение рекомбинации.
Рекомбинация - это перераспределение ДНК, приводящее к возникновению новых комбинаций генов. Гомологичная рекомбинация (ГР) имеет важное значение в делении клеток эукариот. В клетках, делящихся путем митоза, ГР является инструментом репарации повреждений ДНК, вызванных ионизирующим излучением или химическими веществами. ГР, обеспечивает генетическое разнообразие при мейотическом делении с последующим образованием гамет и спор. Центральную роль здесь играет кроссинговер, в результате которого хромосомы обмениваются участками ДНК. Благодаря этому появляются новые, возможно, полезные комбинации генов, которые могут дать потомству эволюционное преимущество.
ГР точно так же как и у эукариот обеспечивает бактерий генетическим разнообразием и является для них основным механизмом репарации ДНК. Лучше всего процесс ГР изучен у Киш.палочки.
К негомологичной рекомбинации можно отнести процесс случайного встраивания вирусной или плазмидной ДНК в ДНК клеток животных, в результате чего в реплицирующихся геномах паповавирусов появляется множество делеций и дупликаций. Концы разорванной ДНК могут соединиться, даже если они негомологичны.
-
Синтез рнк на днк- матрице. Общие принципы транскрипции.
-
Транскрипция всегда происходит на 2-х цепочечной ДНК. (У вирусов с 1цеп. ДНК. ДНК удваиваются, а затем происходит транскрипция)
-
Транскрибируется одна из цепей (У вирусов может транскрб. обе)
-
Транскрипция идёт антипараллельно по отношению к матричной
-
мРНК синтезируется от 5` к 3`
Транскрипция – консервативный процесс, начинается с промоторов, РНК-полимераза взаимодействует с этими участками, затем происходит элонгация (сборка РНК), затем терминация (прокариоты – образующие шпильки, эукариоты нет)
Далее подробный процесс транскрипции.
Транскрипция катализируется рядом ферментов, наиболее важный РНК-полимераза. РНК-полимераза движется по двойной цепи ДНК, разъединяет цепочки и на одной из них по принципу комплементарности строит молекулу РНК из плавающих в ядре нуклеотидов.
Синтез нуклеиновых кислот происходит в направлении от 5'-конца молекул к их 3'-концу. При этом комплементарные цепи всегда антипараллельны (направлены в разные стороны). Поэтому сама РНК синтезируется в направлении 5'→3', но по цепи ДНК движется в ее направлении 3'→5'. Участок ДНК, на котором происходит транскрипция, состоит из трех частей: промотора, гена и терминатора.
Для инициации транскрипции нужны различные белковые факторы, которые прикрепляются к промотору, после чего к ДНК может быть присоединена РНК-полимераза.
Терминация транскрипции происходит после того, как РНК-полимераза встретит один из стоп-кодонов.
У клеток эукариот транскрипция происходит в ядре. После синтеза молекулы РНК здесь же подвергаются созреванию (из них вырезаются ненужные участки, молекулы принимают соответствующую им вторичную и третичную структуру). Далее различные типы РНК выходят в цитоплазму, где участвуют в следующем после транскрипции процессе – трансляции.