
- •Вопросы для зачета по молекулярной биологии
- •История открытия и изучения нуклеиновых кислот.
- •Доказательства генетической роли днк.
- •Методы изучения нуклеиновых кислот.
- •Строение днк. Альтернативные формы двойной спирали днк.
- •Типы рнк, их распространенность и локализация в клетке. Строение рнк на примере тРнк.
- •Денатурация и ренатурация нуклеиновых кислот. Гибридизация рнк и днк.
- •Функции нуклеиновых кислот.
- •Механизм репликации по Уотсону и Крику. Эксперимент Мезельсона и Сталя.
- •Модели репликации.
- •События в репликативной вилке.
- •Ферменты репликации.
- •Особенности репликации днк у про- и эукариот.
- •Репликация теломерных участков. Теломеразная теория старения. Теломераза и онкогенез.
- •Репликация рнк.
- •Спонтанные и индуцированные повреждения днк.
- •Прямая коррекция поврежденной днк.
- •Sos репарация.
- •Световая репарация.
- •Эксцизионная репарация.
- •Рекомбинативная репарация.
- •Значение репарации.
- •Апоптоз.
- •Кроссинговер, его механизм и биологическое значение.
- •Значение рекомбинации.
- •Синтез рнк на днк- матрице. Общие принципы транскрипции.
- •Организация и функции промоторов.
- •Ферменты транскрипции.
- •Особенности транскрипции у про- и эукариот.
- •Ингибиторы транскрипции.
- •Интроны и экзоны. Основные характеристики интронов.
- •Процессинг рнк эукариот и прокариот.
- •Альтернативный сплайсинг.
- •Теории мозаичного строения генов эукариот.
- •Обратная транскрипция, ее медицинское и хозяйственное значение.
- •История открытия и свойства генетического код.
- •Трансляция у прокариот.
- •Трансляция у эукариот.
- •Репрограммирование трансляции.
- •Ингибиторы трансляции.
- •Строение и функции рибосом у про- и эукариот.
-
Кроссинговер, его механизм и биологическое значение.
Кроссинговер– это процесс обмена гомологичными участками гомологичных хромосом (хроматид). При кроссинговере происходит обмен генетическим материалом (аллелями) между хромосомами, и тогда происходит рекомбинация – появление новых сочетаний аллелей.
Механизм кроссинговера «разрыв–воссоединение»:Согласно теории Янссенса–Дарлингтона, кроссинговер происходит в профазе мейоза. Гомологичные хромосомы с хроматидами АВ и ab образуют биваленты. В одной из хроматид в первой хромосоме происходит разрыв на участке А–В, тогда в прилежащей хроматиде второй хромосомы происходит разрыв на участке a–b. Клетка стремится исправить повреждение с помощью ферментов репарации–рекомбинации и присоединить фрагменты хроматид. Однако при этом возможно присоединение крест–накрест (кроссинговер), и образуются рекомбинантные хроматиды Ab и аВ. В анафазе первого деления мейоза происходит расхождение двухроматидных хромосом, а во втором делении – расхождение хроматид (однохроматидных хромосом). Хроматиды, которые не участвовали в кроссинговере, сохраняют исходные сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются некроссоверными; с их участием разовьются некроссоверные гаметы, зиготы и особи. Рекомбинантные хроматиды, которые образовались в ходе кроссинговера, несут новые сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются кроссоверными, с их участием разовьются кроссоверные гаметы, зиготы и особи. Таким образом, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах.
Биологическое значение: Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых представляет собой как единый суперген, контролирующий несколько признаков. В то же время, в ходе кроссинговера возникают рекомбинации – т.е. новые комбинации аллелей. Таким образом, кроссинговер повышает комбинативную изменчивость организмов.
Само явление перекрёста хромосом открыл Ф. Янссенс (1909). Т. Морган (1910) и его ученик К. Бриджес (1916) доказали, что число групп сцепления соответствует гаплоидному числу хромосом .
-
Генная конверсия.
Сочетание кроссинговера с репарацией ( у дрожжей и дрозофилы)
-
Негомологичная рекомбинация.
Например, вирусная ДНК встраивается в геном своего хозяина.
-
Сайт-специфическая рекомбинация.
Рекомбинируется небольшой фрагмент ДНК. Пример встраивание мобильных элементов генома. Мобильные элементы – прыгающие гены, перенос. Из одной части ДНК в другую. Механизм перемещения связан с удвоением участков ДНК.
-
Программируемые перестройки генома.
Перестройку вызывают генетические программы. Экспрессия генов может зависеть от изменений, которые происходят во фланкирующих (прикрывающих) участках. В соседстве с одними последовательностями ген может «молчать», а при изменениях в них – экспрессироваться (процесс, в ходе которого наследственная информация от гена преобразуется в функциональный продукт — РНК или белок). Такие перестройки используются организмами для регуляции экспрессии генов, что создаёт необходимые условия для выполнения дифференцированными клетками специфических функций. Таким образом, существуют генетические программы, которые вызывают перестройки в особых сегментах ДНК в определённое время и в определённых клетках.
Например: наличие разных типов жгутиков у сальмонеллы или разнообразие антител, вырабатывающихся у млекопитающих (у обоих защита от опасностей). В основе всего этого лежат программируемые перестройки последовательностей ДНК