
- •Вопросы для зачета по молекулярной биологии
- •История открытия и изучения нуклеиновых кислот.
- •Доказательства генетической роли днк.
- •Методы изучения нуклеиновых кислот.
- •Строение днк. Альтернативные формы двойной спирали днк.
- •Типы рнк, их распространенность и локализация в клетке. Строение рнк на примере тРнк.
- •Денатурация и ренатурация нуклеиновых кислот. Гибридизация рнк и днк.
- •Функции нуклеиновых кислот.
- •Механизм репликации по Уотсону и Крику. Эксперимент Мезельсона и Сталя.
- •Модели репликации.
- •События в репликативной вилке.
- •Ферменты репликации.
- •Особенности репликации днк у про- и эукариот.
- •Репликация теломерных участков. Теломеразная теория старения. Теломераза и онкогенез.
- •Репликация рнк.
- •Спонтанные и индуцированные повреждения днк.
- •Прямая коррекция поврежденной днк.
- •Sos репарация.
- •Световая репарация.
- •Эксцизионная репарация.
- •Рекомбинативная репарация.
- •Значение репарации.
- •Апоптоз.
- •Кроссинговер, его механизм и биологическое значение.
- •Значение рекомбинации.
- •Синтез рнк на днк- матрице. Общие принципы транскрипции.
- •Организация и функции промоторов.
- •Ферменты транскрипции.
- •Особенности транскрипции у про- и эукариот.
- •Ингибиторы транскрипции.
- •Интроны и экзоны. Основные характеристики интронов.
- •Процессинг рнк эукариот и прокариот.
- •Альтернативный сплайсинг.
- •Теории мозаичного строения генов эукариот.
- •Обратная транскрипция, ее медицинское и хозяйственное значение.
- •История открытия и свойства генетического код.
- •Трансляция у прокариот.
- •Трансляция у эукариот.
- •Репрограммирование трансляции.
- •Ингибиторы трансляции.
- •Строение и функции рибосом у про- и эукариот.
-
Трансляция у прокариот.
Стартовым сигналом к началу синтеза белка служит расположенный на мРНК кодон АУГ, кодирующий метионин (мет).
Инициация.
-
Узнавание стартового кодона (AUG), сопровождается присоединением тРНК аминоацилированной метионином и сборкой рибосомы из большой и малой субъединиц.
Элонгация.
-
Узнавание текущего кодона соответствующей ему аминоацил-тРНК (комплементарное взаимодействие кодона мРНК и антикодона тРНК увеличено).
-
Присоединение аминокислоты, принесённой тРНК, к концу растущей полипептидной цепи.
-
Продвижение рибосомы вдоль матрицы, сопровождающееся высвобождением молекулы тРНК.
-
Аминоацилирование высвободившейся молекулы тРНК соответствующей ей аминоацил-тРНК-синтетазой.
-
Присоединение следующей молекулы аминоацил-тРНК, аналогично стадии (2).
-
Движение рибосомы по молекуле мРНК до стоп-кодона (в данном случае UAG).
Терминация.
Узнавание рибосомой стоп-кодона сопровождается отсоединением новосинтезированного белка и в некоторых случаях диссоциацией рибосомы.
-
Трансляция у эукариот.
Трансляция - это процесс, в результате которого рибосомы считывают генетическую информацию матричных РНК и создают белковый продукт в соответствии с этой информацией.
Специфические молекулы транспортрых РНК (тРНК) служат посредниками между кодом мРНК и конечной белковой последовательностью. В их состав входит последовательность, узнающая код мРНК и соответствующая этому коду аминокислота.
События трансляции разделяют на последующие события: инициацию, элонгацию и терминацию. На стадии инициации рибосома связывает мРНК и первая аминокислота присоединяется к рибосоме. Во время элонгации происходит рост полипептидной цепи. На стадии терминации рибосома отделяется от мРНК и процес трансляции заканчивается. У прокариот и эукариот процессы трансляции схожи, но имеются и существенные различия.
Трансляция происходит в цитоплазме, где находятся рибосомы. В зависимости от дальнейшего предназначения синтезируемых белков, они могут образовываться либо в цитозоле, либо на поверхности шероховатого эндоплазматического ретикулума.
Вместо комплементарного РНК-РНК узнавания, в которое вовлечена прединициирующая последовательность Шайна-Дальгарно прокариотических мРНК, эукариотические мРНК узнаются эукариотическими рибосомами по кэпированному 5'-концу с обязательным участием белка. Предполагается, что этот белок участвует в расплавлении вторичных структур 5'- областей мРНК, облегчая их связывание с малыми субчастицами рибосом. В отличие от прокариот, эукариотическаямРНК образует комплексы с белками (мРНП, или мессенджер-рибонуклеопротеиды, или информосомы ), что обусловливает ее метаболическую стабильность. Вследствие этого у эукариот отсутствует постоянная интенсивная деградация и интенсивный ресинтез мРНК, которые, как правило, моноцистронны и имеют специфически модифицированный (кэпированный) 5'-конец. Все это обусловливает целый ряд особенностей инициации трансляции и ее регуляции у эукариотических организмов. Естественно, что метаболическая стабильность эукариотической мРНК делает регуляцию на уровне трансляции особенно важной в общей картине регуляции биосинтеза белка.