
- •Г.А. Тихановская, л.М. Воропай, в.В. Кочетова химия
- •Предисловие
- •Введение
- •Основные понятия и законы в химии
- •1.1. Основные химические понятия
- •1.2 Закон эквивалентов. Понятие эквивалент. Молярная масса эквивалента
- •1.3. Законы газового состояния. Определение молярных масс газообразных веществ
- •2. Строение атома и периодический закон д.И.Менделеева
- •2.1. Этапы на пути создания квантовой механики
- •2.2. Элементы квантово-механической теории атома
- •Характеристика квантовых чисел
- •3. Типы химической связи
- •3.1. Ковалентная связь. Метод валентных связей
- •Возможная геометрическая конфигурация молекул при Sp3 – гибридизации
- •3.2. Ионная связь
- •3.3. Металлическая связь
- •3.4. Водородная связь
- •3.5. Молекулярное взаимодействие
- •4. Общие закономерности протекания и типы химических реакций
- •4.1. Энергетика химических превращений
- •4.1.1. Термохимия. Закон Гесса
- •4.1.2. Энтропия
- •4.1.3. Энергия Гиббса и направленность химических процессов
- •4.2. Химическая кинетика
- •Стандартные теплоты (энтальпии) образования некоторых веществ
- •Стандартная энергия Гиббса образования некоторых веществ
- •Стандартные абсолютные энтропии некоторых веществ
- •4.2.1. Скорость химической реакции
- •4.2.2. Физические методы стимулирования химических превращений
- •4.2.3. Катализ
- •4.3. Химическое равновесие
- •4.3.1. Константа химического равновесия
- •4.3.2. Принцип Ле Шателье
- •5. Дисперсные системы
- •5.1. Способы выражения концентрации растворов
- •5.2. Свойства разбавленных растворов
- •5.3 Растворы электролитов
- •Степень диссоциации различных электролитов
- •5.4. Ионное произведение воды. Водородный показатель
- •5.5 Равновесие в гетерогенных системах, произведение растворимости
- •6. Гидролиз солей
- •Примеры сильных и слабых кислот и оснований
- •6.1. Произведение растворимости. Примеры решения задач
- •7. Жесткость воды
- •8. Окислительно-восстановительные процессы
- •8.1. Электродные потенциалы и электродвижущие силы
- •Стандартные электронные потенциалы(∆е0) некоторых металлов
- •8.2. Электролиз
- •8.3. Коррозия металлов
- •9. Кристаллическое состояние
- •9.1.Основные понятия
- •9.2 Симметрия кристаллов. Система кристаллов
- •9.3. Кристаллические решетки
- •10. Сплавы
- •10.1. Диаграммы состояния металлических систем
- •Библиографический список
- •Произведение растворимости малорастворимых веществ в воде при 25оС
- •Стандартные, окислительно – восстановительные потенциалы ( по отношению к потенциалу стандартного водородного электрода при t 25oC).
- •Термодинамические константы некоторых веществ
- •Оглавление
9.2 Симметрия кристаллов. Система кристаллов
Классификация
кристаллов основана на их симметрии.
Тот или иной объект обладает симметрией,
если после определенного изменения
его положения в пространстве он
совмещается со своим первоначальным
положением. Так, трехлопастный пропеллер
можно повернуть вокруг оси на 120° (на
одну треть оборота), и тогда его положение
нельзя отличить от первоначального при
условии, что все лопасти совершенно
одинаковы.
Рис. 3 Виды симметрии кристалла
Точно так же он может быть повернут на 240° (на две трети оборота), и снова невозможно будет отличить его новое положение от первоначального. Такое вращение на одну треть оборота, на две трети оборота, а также полный оборот образуют операции симметрии, характерные для оси симметрии третьего порядка. Некоторые другие примеры симметрии показаны на рисунке3.
Кристаллы обладают лишь некоторыми элементами симметрии, к числу которых относятся: центр симметрии, оси симметрии второго порядка, третьего порядка, четвертого порядка, шестого порядка, зеркально-поворотные оси четвертого и третьего порядка, плоскость симметрии. Все эти виды симметрии показаны на рисунке 4.
Ось симметрии пятого порядка в кристаллах не встречается, поскольку угол пятиугольника равен 108°, а на такое число не делится угол 360°.
Существует 32 сочетания элементов симметрии, свойственных кристаллам. Эти сочетания называются видами симметрии или классами кристаллов. Описание видов симметрии кристаллов можно найти в руководствах по кристаллографии. Тридцать два вида (класса) симметрии кристаллов разделяются на шесть систем или сингоний кристаллов:
кубическая система (иногда называемая изометрической) с осями симметрии третьего и четвертого порядка (оси четвертого порядка могут быть зеркально-поворотного типа);
тетрагональная система с одной осью четвертого порядка;
гексагональная или тригональная система (включает ромбоэдрические кристаллы) с одной осью шестого порядка или одной осью третьего порядка;
Рис. 4. Виды симметрии кристалла
ромбическая система с двумя или тремя плоскостями симметрии или осями симметрии второго порядка, образующими прямые углы между собой;
моноклинная система с одной плоскостью или одной осью второго порядка, или же с тем и другим элементом симметрии;
триклинная система с центром симметрии или без элементов симметрии.
Кристаллы и их элементарные ячейки можно описать осями симметрии, которые в одних случаях могут располагаться под прямыми углами одна к другой, в других под углами 120° (в случае гексагональной и тригональной систем), или под другими углами. Различным системам свойственны следующие типы осей:
кубической системе: три равные взаимно перпендикулярные оси длиной а;
тетрагональной системе: две равные оси длиной а и третья ось длиной с; все оси взаимно перпендикулярны;
гексагональной или тригональной системе: две равные оси длиной а образуют между собой угол 120°, третья ось длиной с расположена под прямым углом к первым двум:
ромбической системе: три оси длиной соответственно а, b, с, расположенные взаимно перпендикулярно;
моноклинной системе: две оси (а и с) образуют между собой угол β, а третья ось b расположена под прямым углом к осям а и с;
триклинной системе: три оси а, b и с образуют между собой углы α, β и γ.
Между гранями кристалла и осями должны существовать рациональные отношения: отрезки осей, отсекаемых гранью, относятся к длинам осей а, b и с, как простые числа. Схематическое изображение осей кристаллов и граней показано на рисунках 5 и 6.
Рис. 5. Схематическое изображение осей кристаллов и граней