Добавил:
ajieiiika26@gmail.com Делаю контрольные работы, курсовые, дипломные работы. Писать на e-mail. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
75 группа 2 вариант / ТТД / Часть 1 / ТТД ч1 учебное пособие.doc
Скачиваний:
386
Добавлен:
18.01.2018
Размер:
4.35 Mб
Скачать

8.3.3. Принцип возрастания энтропии изолированной системы

В дальнейшем будут рассмотрены и другие необратимые процессы (дросселирование, смешение и т.д.), которые могут протекать в изолированной системе. Все эти процессы сопровождаются возрастанием энтропии системы.

Проведенный анализ приводит к выводу, что для изолированной системы энтропия или остается постоянной, или возрастает:

ΔSc ≥ 0. (8.30)

При этом если в системе происходят обратимые процессы то ΔSc=0, если необратимые – ΔSc>0. Этот вывод является одной из формулировок второго закона термодинамики: энтропия замкнутой изолированной системы не может уменьшаться.

Поскольку все реальные процессы необратимы, то в случае их прохождения в изолированной системе ее энтропия всегда будет увеличиваться.

Принцип возрастания энтропии имеет большое практическое значение.

1. Указывает на направление протекания процессов. Самопроизвольные процессы, приводящие систему к равновесному состоянию, идут в направлении возрастания энтропии системы. Следовательно, если система находится в неравновесном состоянии, то ее энтропия возрастает ΔSс >0.

2. Дает возможность судить о глубине самопроизвольных процессов. Такие процессы идут до достижения максимума энтропии системы – Sc=Sc мах. Следовательно, если система находится в равновесном состоянии, то ее энтропия не изменяется (ΔSc=0).

3. Увеличение энтропии системы служит мерой необратимости протекающих в ней процессов, т.е. второй закон термодинамики дает не только качественную, но и количественную оценку процессов.

Третье значение принципа возрастания энтропии системы более полно будет раскрыто в следующей главе.

8.4. Получение работы в изолированной системе. Эксергия в объеме и ее потери

Второй закон термодинамики позволяет охарактеризовать условия, при которых возможно получить работу в данной системе. Возможность получения работы в изолированной системе определяется ее неравновесностью. Таким образом, получение работы в системе определяется не запасом энергии в ней (в изолированной системе запас энергии не меняется), а наличием разности давлений, температур, электрических потенциалов и т.д.

В технической термодинамике рассматривается возможность получения механической работы за счет использования внутренней тепловой энергии тел. Поэтому исключим из рассмотрения химические и внутриатомные процессы, действие гравитационных, магнитных, электрических и других полей, а также изменение кинетической энергии видимого движения вещества.

В изолированной термодинамической системе возможно получение механической работы при наличии в ней механической (разность давлений) или термической (разность температур) неравновесности или того и другого одновременно. Например, имеем баллон со сжатым воздухом и тело, имеющее высокую температуру, оба объекта находятся в окружающей среде с постоянными параметрами. В баллоне имеется механическая неравновесность, что позволяет системе получить работу, для этого открывается вентиль баллона и устанавливается воздушная турбина (вертушка). У горячего тела имеется термическая неравновесность, это в свою очередь дает возможность получить работу с помощью теплового двигателя, в качестве холодного тела здесь выступает окружающая среда.

В обоих случаях возможность получения работы исчерпывается, когда система приходит в состояние термодинамического равновесия. Но система может прийти в состояние равновесия и без совершения полезной работы, в результате протекания в ней необратимых процессов. Например, можно выпустить воздух из баллона в атмосферу или охладить горячее тело за счет его взаимодействия с окружающей средой без совершения полезной работы.

Таким образом, при переходе системы из неравновесного состояния в равновесное величина полезной работы зависит от характера процесса такого перехода. Наибольшая работа получается в том случае, когда система переходит в равновесное состояние при протекании в ней только обратимых процессов. При протекании таких процессов отсутствуют потери возможной работы на трение и на необратимый теплообмен, а обратимые циклы имеют максимальный КПД, т.е. максимальная доля теплоты горячего источника превращается в работу.

Проанализировав вышеизложенное, можно сделать два важных вывода, которые имеют непосредственное отношение ко второму закону термодинамики.

1. В изолированной системе возможно получить работу только в том случае, если она не находится в состоянии термодинамического равновесия. Работоспособность системы исчерпывается при достижении в ней равновесного состояния.

2. Наибольшая возможная работа может быть получена при переходе системы из неравновесного состояния в равновесное, при протекании в ней только обратимых процессов.