
- •Государственное образовательное учреждение высшего профессионального
- •Научный редактор
- •Введение техническая термодинамика как теоретическая основа теплоэнергетики
- •1. Общие определения и понятия
- •1.1. Термодинамическая система
- •1.2. Термодинамические параметры состояния
- •Основные термические параметры состояния
- •Удельный объем
- •Давление
- •Соотношения единиц измерения давления
- •Температура
- •1.3. Основные понятия, характеризующие термодинамическую систему
- •1.3.1. Равновесные и неравновесные состояния
- •Термодинамических тел и систем
- •1.3.2. Уравнение состояния термодинамической системы
- •1.3.3. Термические коэффициенты
- •1.3.4. Термодинамический процесс
- •2. Первый закон термодинамики для закрытой системы
- •2.1. Работа изменения объема
- •2.2. Теплота, теплоемкость, энтропия
- •2.3. Внутренняя энергия
- •2.4. Первый закон термодинамики для закрытой системы
- •2.4.1. Аналитические выражения первого закона термодинамики.
- •2.4.2. Энтальпия
- •3. Газы и газовые смеси
- •3.1. Законы идеальных газов
- •3.1.1. Внутренняя энергия идеального газа
- •3.1.2. Теплоемкости газов
- •Удельные теплоемкости
- •Теплоемкости процессов
- •Теплоемкости идеальных газов
- •Теплоемкость реальных газов
- •Отношение изобарной и изохорной теплоемкостей
- •3.1.3. Энтальпия идеальных газов
- •3.1.4. Энтропия идеальных газов
- •3.2. Газовые смеси
- •Основные характеристики смеси газов
- •Теплоемкости газовых смесей
- •4. Газовые процессы
- •4.1. Политропные процессы
- •4.2. Частные случаи политропных процессов
- •Уравнения процессов, расчетные выражения их теплоты, работы, изменения внутренней энерги, энтальпии и энтропи
- •4.3. Изображение политропных процессов в р,V и t,s- диаграммах Политропа в р,V- диаграмме
- •Политропа в t,s- диаграмме
- •4.4. Установление показателя политропы по опытным данным
- •4.5. Качественный и количественный анализ политропных процессов в р,V- и t,s- диаграммах
- •4.6. Определение термодинамических свойств идеальных газов с учетом влияния температуры на их изобарную и изохорную теплоемкости
- •Определение энергетических параметров идеальных газов с учетом влияния температуры на cp и cv
- •5. Реальные газы и пары
- •5.1. Термические свойства реальных газов
- •5.2. Уравнения состояния реальных газов. Энергетические свойства реальных газов
- •6. Термодинамические свойства воды и водяного пара
- •6.1. Фазовые состояния и превращения воды
- •6.2. Фазовые диаграммы р,t-, р,V- и t,s для н2о
- •6.3. Жидкость на линии фазового перехода
- •6.4. Сухой насыщенный пар
- •6.5. Влажный насыщенный пар
- •6.6. Перегретый пар
- •6.7. Таблицы термодинамических свойств воды и водяного пара
- •6.8. Диаграмма t,s для воды и водяного пара
- •6.9. Диаграмма h,s для воды и водяного пара
- •6.10. Основные процессы изменения состояния водяного пара
- •Адиабатный процесс
- •Изохорный процесс
- •Изобарный процесс
- •Изотермический процесс
- •7. Влажный воздух
- •7.1. Основные характеристики влажного воздуха
- •7.2. Характеристики атмосферного влажного воздуха
- •Психрометр
- •Область ненасыщенного влажного воздуха
- •Область перенасыщенного влажного воздуха
- •Изображение в h,d- диаграмме изотерм меньше 0 оС и особенности характеристик влажного воздуха при отрицательных температурах
- •Пример пользования h,d- диаграммой
- •Изображение процессов влажного воздуха в h,d- диаграмме
- •8. Второй закон термодинамики
- •8.1. Замкнутые процессы (циклы)
- •8.1.1. Коэффициенты, характеризующие тепловую экономичность обратимых циклов
- •8.1.2. Цикл Карно
- •8.1.3. Обратный цикл Карно
- •8.1.4. Регенеративный (обобщенный) цикл Карно
- •8.1.5. Теорема Карно
- •8.1.6. Термодинамическая шкала температур.
- •8.2. Энтропия реальных тел и ее изменение в необратимых
- •8.3. Изменение энтропии изолированной системы
- •8.3.1. Изменение энтропии изолированной системы
- •8.3.2. Изменение энтропии изолированной системы
- •8.3.3. Принцип возрастания энтропии изолированной системы
- •8.4. Получение работы в изолированной системе. Эксергия в объеме и ее потери
- •8.4.1. Эксергия в объеме
- •8.4.2. Практическое значение эксергии
- •8.4.2.1. Определение эксергии источников работы, имеющих
- •8.4.2.2. Определение влияния необратимости на полезную работу в изолированной системе
- •Необратимый теплообмен
- •Необратимость, обусловленная преобразованием работы в теплоту путем трения
- •Необратимость при расширении газа в вакуум
- •Необратимость при диффузионном смешении газов с одинаковыми температурами и давлениями
- •Изменение энтропии газов в этом процессе будет определяться выражением
- •Необратимое преобразование теплоты в работу при источнике работы с постоянной температурой
- •Необратимое преобразование теплоты в работу при источнике работы с конечной теплоемкостью
- •Методы оценки тепловой экономичности реальных циклов тепловых машин
- •Заключение
- •Библиографический список
- •Оглавление
- •1.3.2. Уравнение состояния термодинамической системы……...……. 15
- •1.3.3. Термические коэффициенты……………………………………….. 17
- •Чухин Иван Михайлович
- •Часть 1
- •153003, Г. Иваново, ул. Рабфаковская, 34.
- •153025, Г. Иваново, ул. Дзержинского, 39.
7. Влажный воздух
Влажный воздух – это смесь сухого воздуха и водяного пара. В воздухе при определенных условиях кроме водяного пара может находиться его жидкая (вода) или кристаллическая (лед, снег) фаза. В естественных условиях воздух всегда содержит водяной пар.
7.1. Основные характеристики влажного воздуха
Влажный воздух можно рассматривать как смесь сухого воздуха и водяного пара (жидкую и твердую фазы воды в воздухе пока считаем отсутствующими).
Используя законы для смесей газов, получим, что давление влажного воздуха равно сумме парциальных давлений сухого воздуха и водяного пара:
Р = Рв + Рп . (7.1)
Для
наглядности представления основных
характеристик влажного воздуха изобразим
в Р,v- диаграмме (рис.7.1) состояния водяного
пара во влажном воздухе. В
качестве определяющих параметров
водяного пара во влажном воздухе
используются температура воздуха tи
парциальное давление водяного пара
Рп.
Водяной пар во влажном воздухе может находиться в трех состояниях (рис.7.1): точка 1 – перегретый пар, точка 2 – сухой насыщенный пар, точка 3 – влажный насыщенный пар (сухой насыщенный пар плюс капельки жидкости в состоянии насыщения). Высшим пределом парциального давления водяных паров при данной температуре воздуха t является давление насыщения пара Рп max = Рн.
Абсолютная влажность – это массовое количество водяных паров в одном кубическом метре влажного воздуха. Для ее определения используется величина, обратная удельному объему водяного пара при Рп и t, =1/v (кг/м3). Действительно, по закону Дальтона водяной пар занимает весь объем смеси, а его плотность соответствует массе водяного пара в одном кубическом метре влажного воздуха.
Необходимо отметить, что абсолютная влажность воздуха характеризует содержание в воздухе только одной – паровой фазы воды.
Относительная влажность – это отношение абсолютной влажности к максимально возможной влажности воздуха при данной температуре:
,
(7.2)
где " и v" – максимальная абсолютная влажность воздуха и удельный объем сухого насыщенного водяного пара при данной температуре t.
Относительная влажность воздуха характеризует потенциальную возможность воздуха испарять влагу и забирать в себя пар из окружающей среды при данной температуре.
Максимальное содержание пара в воздухе соответствует состоянию точки 2 в Р,v- диаграмме (см. рис.7.1), где пар сухой насыщенный. При переходе в область влажного пара при данной температуре t (точка 3) в воздухе количество сухого насыщенного пара остается постоянным (такое же, как в точке 2) (для паровой фазы воды в этом случае удельный объем остается неизменным, v"=const, и минимально возможным при данной температуре воздуха), только к нему добавляются капельки воды в состоянии насыщения.
Различают 3 состояния влажного воздуха.
1. Ненасыщенный влажный воздух – <100 %, Рп<Рн, <", водяной пар во влажном воздухе в виде перегретого пара (точка 1).
2. Насыщенный влажный воздух – =100 %, Рп=Рн, =", водяной пар во влажном воздухе в виде сухого насыщенного пара (точка 2).
3. Перенасыщенный влажный воздух – =100 %, Рп=Рн, =", кроме сухого насыщенного пара в воздухе находятся капельки воды в состоянии насыщения или льда, снега (точка 3 при наличии капелек воды).
В технике используется такая характеристика влажного воздуха, как температура точки росы. Это такая температура, начиная с которой при охлаждении влажного воздуха при постоянном давлении из него начинается выпадение капелек воды (соответствует температуре точки А процесса 1А, рис. 7.1). При снижении температуры воздуха ниже температуры точки росы при постоянном давлении всей смеси и постоянном содержании в ней H2О (процесс АВ) парциальное давление водяного пара уменьшается (Рвп<Рп), количество сухого насыщенного пара уменьшается, а количество капелек воды увеличивается. В этом случае в P,v- диаграмме процесс АВ пойдет в области влажного пара с уменьшением степени сухости по мере снижения температуры.